Lifting problems and transgression for non-abelian gerbes

被引:14
|
作者
Nikolaus, Thomas [1 ]
Waldorf, Konrad [1 ,2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] Hausdorff Res Inst Math, D-53115 Bonn, Germany
关键词
Non-abelian gerbe; Non-abelian cohomology; Lie; 2-group; Transgression; Loop space; String structure; BUNDLE GERBES; DIFFERENTIAL GEOMETRY; STRING; 2-GROUP; LOOP SPACE; MODELS;
D O I
10.1016/j.aim.2013.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss lifting and reduction problems for bundles and gerbes in the context of a Lie 2-group. We obtain a geometrical formulation (and a new proof) for the exactness of Breen's long exact sequence in non-abelian cohomology. We use our geometrical formulation in order to define a transgression map in non-abelian cohomology. This transgression map relates the degree one non-abelian cohomology of a smooth manifold (represented by non-abelian gerbes) with the degree zero non-abelian cohomology of the free loop space (represented by principal bundles). We prove several properties for this transgression map. For instance, it reduces - in case of a Lie 2-group with a single object to the ordinary transgression in ordinary cohomology. We describe applications of our results to string manifolds: first, we obtain a new comparison theorem for different notions of string structures. Second, our transgression map establishes a direct relation between string structures and spin structures on the loop space. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 79
页数:30
相关论文
共 50 条
  • [31] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813
  • [32] On non-Abelian holonomies
    Alfaro, J
    Morales-Técotl, HA
    Reyes, M
    Urrutia, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (48): : 12097 - 12107
  • [33] Non-Abelian firewall
    Singleton, Douglas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2020, 29 (14):
  • [34] NON-ABELIAN ZILCH
    DESER, S
    NICOLAI, H
    PHYSICS LETTERS B, 1981, 98 (1-2) : 45 - 47
  • [35] NON-ABELIAN SINGLETONS
    FLATO, M
    FRONSDAL, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) : 524 - 531
  • [36] Non-Abelian geometry
    Dasgupta, K
    Yin, Z
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) : 313 - 338
  • [37] ON NON-ABELIAN DUALITY
    ALVAREZ, E
    ALVAREZGAUME, L
    LOZANO, Y
    NUCLEAR PHYSICS B, 1994, 424 (01) : 155 - 183
  • [38] Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
    Yasui, Shigehiro
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [39] INFINITE NON-ABELIAN GROUPS WITH INVARIANCE CONDITION FOR INFINITE NON-ABELIAN SUBGROUPS
    CHERNIKO.SN
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (06): : 1280 - &
  • [40] THE NON-ABELIAN SOLITONS FOR THE SL(2,C) NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    INVERSE PROBLEMS, 1987, 3 (02) : 329 - 340