Lifting problems and transgression for non-abelian gerbes

被引:14
|
作者
Nikolaus, Thomas [1 ]
Waldorf, Konrad [1 ,2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] Hausdorff Res Inst Math, D-53115 Bonn, Germany
关键词
Non-abelian gerbe; Non-abelian cohomology; Lie; 2-group; Transgression; Loop space; String structure; BUNDLE GERBES; DIFFERENTIAL GEOMETRY; STRING; 2-GROUP; LOOP SPACE; MODELS;
D O I
10.1016/j.aim.2013.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss lifting and reduction problems for bundles and gerbes in the context of a Lie 2-group. We obtain a geometrical formulation (and a new proof) for the exactness of Breen's long exact sequence in non-abelian cohomology. We use our geometrical formulation in order to define a transgression map in non-abelian cohomology. This transgression map relates the degree one non-abelian cohomology of a smooth manifold (represented by non-abelian gerbes) with the degree zero non-abelian cohomology of the free loop space (represented by principal bundles). We prove several properties for this transgression map. For instance, it reduces - in case of a Lie 2-group with a single object to the ordinary transgression in ordinary cohomology. We describe applications of our results to string manifolds: first, we obtain a new comparison theorem for different notions of string structures. Second, our transgression map establishes a direct relation between string structures and spin structures on the loop space. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 79
页数:30
相关论文
共 50 条
  • [11] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [12] MAPPINGS AND FACETS FOR NON-ABELIAN GROUP PROBLEMS
    ARAOZ, J
    JOHNSON, EL
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (02): : 171 - 188
  • [13] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [14] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [15] Extension problems and non-Abelian duality for C*-algebras
    Huef, Astrid An
    Kaliszewski, S.
    Raeburn, Iain
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (02) : 229 - 238
  • [16] On the solubility of some non-abelian embedding problems.
    Richter, H
    MATHEMATISCHE ANNALEN, 1936, 112 : 69 - 84
  • [17] SOME PROBLEMS IN NON-ABELIAN HOMOTOPICAL AND HOMOLOGICAL ALGEBRA
    BROWN, R
    LECTURE NOTES IN MATHEMATICS, 1990, 1418 : 105 - 129
  • [18] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [19] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [20] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):