Lifting problems and transgression for non-abelian gerbes

被引:14
|
作者
Nikolaus, Thomas [1 ]
Waldorf, Konrad [1 ,2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] Hausdorff Res Inst Math, D-53115 Bonn, Germany
关键词
Non-abelian gerbe; Non-abelian cohomology; Lie; 2-group; Transgression; Loop space; String structure; BUNDLE GERBES; DIFFERENTIAL GEOMETRY; STRING; 2-GROUP; LOOP SPACE; MODELS;
D O I
10.1016/j.aim.2013.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss lifting and reduction problems for bundles and gerbes in the context of a Lie 2-group. We obtain a geometrical formulation (and a new proof) for the exactness of Breen's long exact sequence in non-abelian cohomology. We use our geometrical formulation in order to define a transgression map in non-abelian cohomology. This transgression map relates the degree one non-abelian cohomology of a smooth manifold (represented by non-abelian gerbes) with the degree zero non-abelian cohomology of the free loop space (represented by principal bundles). We prove several properties for this transgression map. For instance, it reduces - in case of a Lie 2-group with a single object to the ordinary transgression in ordinary cohomology. We describe applications of our results to string manifolds: first, we obtain a new comparison theorem for different notions of string structures. Second, our transgression map establishes a direct relation between string structures and spin structures on the loop space. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 79
页数:30
相关论文
共 50 条
  • [1] Non-abelian differentiable gerbes
    Laurent-Gengoux, Camille
    Stienon, Mathieu
    Xu, Ping
    ADVANCES IN MATHEMATICS, 2009, 220 (05) : 1357 - 1427
  • [2] CONNECTIONS ON NON-ABELIAN GERBES AND THEIR HOLONOMY
    Schreiber, Urs
    Waldorf, Konrad
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 476 - 540
  • [3] Abelian and non-abelian branes in WZW models and gerbes
    Gawedzki, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) : 23 - 73
  • [4] Abelian and Non-Abelian Branes in WZW Models and Gerbes
    Krzysztof Gawedzki
    Communications in Mathematical Physics, 2005, 258 : 23 - 73
  • [5] Non-Abelian gerbes and enhanced Leibniz algebras
    Strobl, Thomas
    PHYSICAL REVIEW D, 2016, 94 (02)
  • [6] Lie groupoids, gerbes, and non-Abelian cohomology
    Moerdijk, I
    K-THEORY, 2003, 28 (03): : 207 - 258
  • [7] Topological Quantum Field Theory on non-Abelian gerbes
    Kalkkinen, Jussi
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 505 - 530
  • [8] M-brane models from non-abelian gerbes
    Sam Palmer
    Christian Sämann
    Journal of High Energy Physics, 2012
  • [9] M-brane models from non-abelian gerbes
    Palmer, Sam
    Saemann, Christian
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (07):
  • [10] Non-Abelian electrodynamics: Progress and problems
    Crowell, LB
    MODERN NONLINEAR OPTICS, PT 3, SECOND ED, 2001, 119 : 403 - 467