Blockwise sparse regression

被引:2
|
作者
Kim, Yuwon [1 ]
Kim, Jinseog
Kim, Yongdai
机构
[1] Seoul Natl Univ, Stat Res Ctr Complex Syst, Seoul, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
关键词
gradient projection method; LASSO; ridge; variable selection;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Yuan an Lin (2004) proposed the grouped LASSO, which achieves shrinkage and selection simultaneously, as LASSO does, but works on blocks of covariates. That is, the grouped LASSO provides a model where some blocks of regression coefficients are exactly zero. The grouped LASSO is useful when there are meaningful blocks of covariates such as polynomial regression and dummy variables from categorical variables. In this paper, we propose an extension of the grouped LASSO, called 'Blockwise Sparse Regression' (BSR). The BSR achieves shrinkage and selection simultaneously on blocks of covariates similarly to the grouped LASSO, but it works for general loss functions including generalized linear models. An efficient computational algorithm is developed and a blockwise standardization method is proposed. Simulation results show that the BSR compromises the ridge and LASSO for logistic regression. The proposed method is illustrated with two datasets.
引用
收藏
页码:375 / 390
页数:16
相关论文
共 50 条
  • [21] Sparse and nonnegative sparse D-MORPH regression
    Genyuan Li
    Roberto Rey-de-Castro
    Xi Xing
    Herschel Rabitz
    Journal of Mathematical Chemistry, 2015, 53 : 1885 - 1914
  • [22] Sparse and nonnegative sparse D-MORPH regression
    Li, Genyuan
    Rey-de-Castro, Roberto
    Xing, Xi
    Rabitz, Herschel
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (08) : 1885 - 1914
  • [23] Acceleration in Distributed Sparse Regression
    Maros, Marie
    Scutari, Gesualdo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] Sparse regression with exact clustering
    She, Yiyuan
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1055 - 1096
  • [25] Optimal Sparse Regression Trees
    Zhang, Rui
    Xin, Rui
    Seltzer, Margo
    Rudin, Cynthia
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11270 - 11279
  • [26] Pansharpening via sparse regression
    Tang, Songze
    Xiao, Liang
    Liu, Pengfei
    Huang, Lili
    Zhou, Nan
    Xu, Yang
    OPTICAL ENGINEERING, 2017, 56 (09)
  • [27] Fast sparse regression and classification
    Friedman, Jerome H.
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (03) : 722 - 738
  • [28] Sparse regression for extreme values
    Chang, Andersen
    Wang, Minjie
    Allen, Genevera, I
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5995 - 6035
  • [29] Sparse regression for plasma physics
    Kaptanoglu, Alan A.
    Hansen, Christopher
    Lore, Jeremy D.
    Landreman, Matt
    Brunton, Steven L.
    PHYSICS OF PLASMAS, 2023, 30 (03)
  • [30] Sparse hierarchical regression with polynomials
    Bertsimas, Dimitris
    Van Parys, Bart
    MACHINE LEARNING, 2020, 109 (05) : 973 - 997