Blockwise sparse regression

被引:2
|
作者
Kim, Yuwon [1 ]
Kim, Jinseog
Kim, Yongdai
机构
[1] Seoul Natl Univ, Stat Res Ctr Complex Syst, Seoul, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
关键词
gradient projection method; LASSO; ridge; variable selection;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Yuan an Lin (2004) proposed the grouped LASSO, which achieves shrinkage and selection simultaneously, as LASSO does, but works on blocks of covariates. That is, the grouped LASSO provides a model where some blocks of regression coefficients are exactly zero. The grouped LASSO is useful when there are meaningful blocks of covariates such as polynomial regression and dummy variables from categorical variables. In this paper, we propose an extension of the grouped LASSO, called 'Blockwise Sparse Regression' (BSR). The BSR achieves shrinkage and selection simultaneously on blocks of covariates similarly to the grouped LASSO, but it works for general loss functions including generalized linear models. An efficient computational algorithm is developed and a blockwise standardization method is proposed. Simulation results show that the BSR compromises the ridge and LASSO for logistic regression. The proposed method is illustrated with two datasets.
引用
收藏
页码:375 / 390
页数:16
相关论文
共 50 条
  • [41] Constrained sparse Galerkin regression
    Loiseau, Jean-Christophe
    Brunton, Steven L.
    JOURNAL OF FLUID MECHANICS, 2018, 838 : 42 - 67
  • [42] Robust and sparse bridge regression
    Li, Bin
    Yu, Qingzhao
    STATISTICS AND ITS INTERFACE, 2009, 2 (04) : 481 - 491
  • [43] Sparse tensor additive regression
    Hao, Botao
    Wang, Boxiang
    Wang, Pengyuan
    Zhang, Jingfei
    Yang, Jian
    Sun, Will Wei
    Journal of Machine Learning Research, 2021, 22
  • [44] On sparse optimal regression trees
    Blanquero, Rafael
    Carrizosa, Emilio
    Molero-Rio, Cristina
    Morales, Dolores Romero
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 299 (03) : 1045 - 1054
  • [45] Globally Sparse PLS Regression
    Liu, Tzu-Yu
    Trinchera, Laura
    Tenenhaus, Arthur
    Wei, Dennis
    Hero, Alfred O.
    NEW PERSPECTIVES IN PARTIAL LEAST SQUARES AND RELATED METHODS, 2013, 56 : 117 - 127
  • [46] Sparse sliced inverse regression
    Li, Lexin
    Nachtsheim, Christopher J.
    TECHNOMETRICS, 2006, 48 (04) : 503 - 510
  • [47] Ordinal Regression with Sparse Bayesian
    Chang, Xiao
    Zheng, Qinghua
    Lin, Peng
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 591 - 599
  • [48] Scaled sparse linear regression
    Sun, Tingni
    Zhang, Cun-Hui
    BIOMETRIKA, 2012, 99 (04) : 879 - 898
  • [49] Marginalized lasso in sparse regression
    Lee, Seokho
    Kim, Seonhwa
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 396 - 411
  • [50] Sparse hierarchical regression with polynomials
    Dimitris Bertsimas
    Bart Van Parys
    Machine Learning, 2020, 109 : 973 - 997