Sparse regression for plasma physics

被引:11
|
作者
Kaptanoglu, Alan A. [1 ,2 ]
Hansen, Christopher [3 ,4 ]
Lore, Jeremy D. [5 ]
Landreman, Matt [1 ]
Brunton, Steven L. [2 ]
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
DATA-DRIVEN DISCOVERY; SCALABLE ALGORITHMS; GOVERNING EQUATIONS; SENSOR PLACEMENT; OPTIMIZATION; FRAMEWORK; STABILITY; DYNAMICS; MODELS;
D O I
10.1063/5.0139039
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Linear Time Electromigration Analysis Based on Physics-Informed Sparse Regression
    Chen, Liang
    Jin, Wentian
    Kavousi, Mohammadamir
    Lamichhane, Subed
    Tan, Sheldon X. -D.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (11) : 4126 - 4138
  • [2] COMPUTERIZED-TOMOGRAPHY FOR SPARSE-DATA PLASMA PHYSICS EXPERIMENTS
    WILLIAMSON, JH
    EVANS, DE
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1982, 10 (02) : 82 - 93
  • [3] Physics-informed deep sparse regression network for nonlinear dynamical system identification
    Zhao, Shangyu
    Cheng, Changming
    Lin, Miaomiao
    Peng, Zhike
    JOURNAL OF SOUND AND VIBRATION, 2025, 595
  • [4] Sparse Regression as a Sparse Eigenvalue Problem
    Moghaddam, Baback
    Gruber, Amit
    Weiss, Yair
    Avidan, Shai
    2008 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2008, : 255 - +
  • [5] Sparse Regression as a Sparse Eigenvalue Problem
    Moghaddam, Baback
    Gruber, Amit
    Weiss, Yair
    Avidan, Shai
    2008 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2008, : 157 - +
  • [6] Physics - Sparse crystals
    Schiffer, J
    SCIENCE, 1998, 279 (5351) : 675 - 676
  • [7] Degeneracy engineering for classical and quantum annealing: A case study of sparse linear regression in collider physics
    Anschuetz, Eric R.
    Funcke, Lena
    Komiske, Patrick T.
    Kryhin, Serhii
    Thaler, Jesse
    PHYSICAL REVIEW D, 2022, 106 (05)
  • [8] Sparse Convex Regression
    Bertsimas, Dimitris
    Mundru, Nishanth
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (01) : 262 - 279
  • [9] Blockwise sparse regression
    Kim, Yuwon
    Kim, Jinseog
    Kim, Yongdai
    STATISTICA SINICA, 2006, 16 (02) : 375 - 390
  • [10] Sparse quantile regression
    Chen, Le-Yu
    Lee, Sokbae
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 2195 - 2217