机构:
Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
Univ Washington, Dept Mech Engn, Seattle, WA 98195 USAUniv Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
Kaptanoglu, Alan A.
[1
,2
]
Hansen, Christopher
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAUniv Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
Hansen, Christopher
[3
,4
]
Lore, Jeremy D.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Oak Ridge, TN 37831 USAUniv Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
Lore, Jeremy D.
[5
]
Landreman, Matt
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USAUniv Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
Landreman, Matt
[1
]
Brunton, Steven L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Mech Engn, Seattle, WA 98195 USAUniv Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
Brunton, Steven L.
[2
]
机构:
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression.
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USAMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Anschuetz, Eric R.
Funcke, Lena
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Codesign Ctr Quantum Advantage, Cambridge, MA USA
NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA USAMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Funcke, Lena
Komiske, Patrick T.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA USAMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Komiske, Patrick T.
Kryhin, Serhii
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA USAMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Kryhin, Serhii
Thaler, Jesse
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Codesign Ctr Quantum Advantage, Cambridge, MA USA
NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA USAMIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
机构:
Acad Sinica, Inst Econ, Taipei City, TaiwanAcad Sinica, Inst Econ, Taipei City, Taiwan
Chen, Le-Yu
Lee, Sokbae
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Econ, New York, NY 10027 USA
Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, EnglandAcad Sinica, Inst Econ, Taipei City, Taiwan