Sparse regression for plasma physics

被引:11
|
作者
Kaptanoglu, Alan A. [1 ,2 ]
Hansen, Christopher [3 ,4 ]
Lore, Jeremy D. [5 ]
Landreman, Matt [1 ]
Brunton, Steven L. [2 ]
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
DATA-DRIVEN DISCOVERY; SCALABLE ALGORITHMS; GOVERNING EQUATIONS; SENSOR PLACEMENT; OPTIMIZATION; FRAMEWORK; STABILITY; DYNAMICS; MODELS;
D O I
10.1063/5.0139039
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Acceleration in Distributed Sparse Regression
    Maros, Marie
    Scutari, Gesualdo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [22] Sparse regression with exact clustering
    She, Yiyuan
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1055 - 1096
  • [23] Optimal Sparse Regression Trees
    Zhang, Rui
    Xin, Rui
    Seltzer, Margo
    Rudin, Cynthia
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11270 - 11279
  • [24] Pansharpening via sparse regression
    Tang, Songze
    Xiao, Liang
    Liu, Pengfei
    Huang, Lili
    Zhou, Nan
    Xu, Yang
    OPTICAL ENGINEERING, 2017, 56 (09)
  • [25] Fast sparse regression and classification
    Friedman, Jerome H.
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (03) : 722 - 738
  • [26] Sparse regression for extreme values
    Chang, Andersen
    Wang, Minjie
    Allen, Genevera, I
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5995 - 6035
  • [27] Sparse hierarchical regression with polynomials
    Bertsimas, Dimitris
    Van Parys, Bart
    MACHINE LEARNING, 2020, 109 (05) : 973 - 997
  • [28] Modulated Sparse Regression Codes
    Hsieh, Kuan
    Venkataramanan, Ramji
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1432 - 1437
  • [29] REGRESSION WITH SPARSE APPROXIMATIONS OF DATA
    Noorzad, Pardis
    Sturm, Bob L.
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 674 - 678
  • [30] Sparse regularized local regression
    Vidaurre, Diego
    Bielza, Concha
    Larranaga, Pedro
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 62 : 122 - 135