Sparse regression for plasma physics

被引:11
|
作者
Kaptanoglu, Alan A. [1 ,2 ]
Hansen, Christopher [3 ,4 ]
Lore, Jeremy D. [5 ]
Landreman, Matt [1 ]
Brunton, Steven L. [2 ]
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
DATA-DRIVEN DISCOVERY; SCALABLE ALGORITHMS; GOVERNING EQUATIONS; SENSOR PLACEMENT; OPTIMIZATION; FRAMEWORK; STABILITY; DYNAMICS; MODELS;
D O I
10.1063/5.0139039
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] SPARSE REGULARIZED FUZZY REGRESSION
    Rapaic, Danilo
    Krstanovic, Lidija
    Ralevic, Nebojsa
    Obradovic, Ratko
    Klipa, Djuro
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (02) : 583 - 604
  • [32] Multitarget Sparse Latent Regression
    Zhen, Xiantong
    Yu, Mengyang
    Zheng, Feng
    Ben Nachum, Ilanit
    Bhaduri, Mousumi
    Laidley, David
    Li, Shuo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1575 - 1586
  • [33] Distributed Sparse Linear Regression
    Mateos, Gonzalo
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) : 5262 - 5276
  • [34] Sparse Tensor Additive Regression
    Hao, Botao
    Wang, Boxiang
    Wang, Pengyuan
    Zhang, Jingfei
    Yang, Jian
    Sun, Will Wei
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [35] Marginalized lasso in sparse regression
    Seokho Lee
    Seonhwa Kim
    Journal of the Korean Statistical Society, 2019, 48 : 396 - 411
  • [36] CONFIDENCE SETS IN SPARSE REGRESSION
    Nickl, Richard
    van de Geer, Sara
    ANNALS OF STATISTICS, 2013, 41 (06): : 2852 - 2876
  • [37] SPARSE MULTIVARIATE FACTOR REGRESSION
    Kharratzadeh, Milad
    Coates, Mark
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [38] Constrained sparse Galerkin regression
    Loiseau, Jean-Christophe
    Brunton, Steven L.
    JOURNAL OF FLUID MECHANICS, 2018, 838 : 42 - 67
  • [39] Robust and sparse bridge regression
    Li, Bin
    Yu, Qingzhao
    STATISTICS AND ITS INTERFACE, 2009, 2 (04) : 481 - 491
  • [40] Sparse tensor additive regression
    Hao, Botao
    Wang, Boxiang
    Wang, Pengyuan
    Zhang, Jingfei
    Yang, Jian
    Sun, Will Wei
    Journal of Machine Learning Research, 2021, 22