Sparse regression for plasma physics

被引:11
|
作者
Kaptanoglu, Alan A. [1 ,2 ]
Hansen, Christopher [3 ,4 ]
Lore, Jeremy D. [5 ]
Landreman, Matt [1 ]
Brunton, Steven L. [2 ]
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
DATA-DRIVEN DISCOVERY; SCALABLE ALGORITHMS; GOVERNING EQUATIONS; SENSOR PLACEMENT; OPTIMIZATION; FRAMEWORK; STABILITY; DYNAMICS; MODELS;
D O I
10.1063/5.0139039
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On sparse optimal regression trees
    Blanquero, Rafael
    Carrizosa, Emilio
    Molero-Rio, Cristina
    Morales, Dolores Romero
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 299 (03) : 1045 - 1054
  • [42] Globally Sparse PLS Regression
    Liu, Tzu-Yu
    Trinchera, Laura
    Tenenhaus, Arthur
    Wei, Dennis
    Hero, Alfred O.
    NEW PERSPECTIVES IN PARTIAL LEAST SQUARES AND RELATED METHODS, 2013, 56 : 117 - 127
  • [43] Sparse sliced inverse regression
    Li, Lexin
    Nachtsheim, Christopher J.
    TECHNOMETRICS, 2006, 48 (04) : 503 - 510
  • [44] Ordinal Regression with Sparse Bayesian
    Chang, Xiao
    Zheng, Qinghua
    Lin, Peng
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 591 - 599
  • [45] Scaled sparse linear regression
    Sun, Tingni
    Zhang, Cun-Hui
    BIOMETRIKA, 2012, 99 (04) : 879 - 898
  • [46] Marginalized lasso in sparse regression
    Lee, Seokho
    Kim, Seonhwa
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 396 - 411
  • [47] Sparse hierarchical regression with polynomials
    Dimitris Bertsimas
    Bart Van Parys
    Machine Learning, 2020, 109 : 973 - 997
  • [48] Sparse Regression LDPC Codes
    Ebert, Jamison R.
    Chamberland, Jean-Francois
    Narayanan, Krishna R.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 167 - 191
  • [49] Robust and sparse logistic regression
    Cornilly, Dries
    Tubex, Lise
    Van Aelst, Stefan
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 663 - 679
  • [50] On Regularized Sparse Logistic Regression
    Zhang, Mengyuan
    Liu, Kai
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1535 - 1540