Quantitative Analysis of Contrast to Noise Ratio Using a Phase Contrast X-ray Imaging Prototype

被引:0
|
作者
Ghani, Muhammad U. [1 ]
Wu, Di [1 ]
Li, Yuhua [1 ]
Kang, Minhua [1 ]
Chen, Wei R.
Wu, Xizeng
Liu, Hong [1 ]
机构
[1] Univ Oklahoma, Ctr Bioengn, Norman, OK 73019 USA
来源
关键词
Contrast to Noise Ratio; Phase Contrast; RADIOGRAPHY; RESOLUTION;
D O I
10.1117/12.2001525
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The purpose of this study was to determine the Contrast to Noise Ratio (CNR) of the x-ray images taken with the phase contrast imaging mode and compare them with the CNR of the images taken under the conventional mode. For each mode, three images were taken under three exposure conditions of 100 kVp (2.8mAs), 120 kVp (1.9mAs) and 140kVp (1.42mAs). A 1.61cm thick contrast detail phantom was used as an imaging object. For phase contrast, the source to image detector distance (SID) was 182.88 cm and the source to object (SOD) distance was 73.15 cm. The SOD was the same as SID in the conventional imaging mode. A computed radiography (CR) plate was used as a detector and the output CR images were converted to linear form in relation with the incident x-ray exposure. To calculate CNR, an image processing software was used to determine the mean pixel value and the standard deviation of the pixels in the region of interest (ROI) and in the nearby background around ROI. At any given exposure condition investigated in this study, the CNR values for the phase contrast images were better as compared to the corresponding conventional mode images. The superior image quality in terms of CNR is contributed by the phase-shifts resulted contrast, as well as the reduced scatters due to the air gap between the object and the detector.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Differential x-ray phase contrast imaging using a shearing interferometer
    David, C
    Nöhammer, B
    Solak, HH
    Ziegler, E
    APPLIED PHYSICS LETTERS, 2002, 81 (17) : 3287 - 3289
  • [42] Phase contrast imaging using small focus X-ray sources
    Ishisaka, A
    Ohara, H
    Honda, C
    Shimada, F
    Endo, T
    RADIOLOGY, 2000, 217 : 314 - 314
  • [43] Phase contrast imaging using a micro focus x-ray source
    Zhou, Wei
    Majidi, Keivan
    Brankov, Jovan G.
    ADVANCES IN X-RAY/EUV OPTICS AND COMPONENTS IX, 2014, 9207
  • [44] Phase-contrast tomographic imaging using an X-ray interferometer
    Momose, A
    Takeda, T
    Itai, Y
    Yoneyama, A
    Hirano, K
    JOURNAL OF SYNCHROTRON RADIATION, 1998, 5 : 309 - 314
  • [45] Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast
    Millard, T. P.
    Endrizzi, M.
    Everdell, N.
    Rigon, L.
    Arfelli, F.
    Menk, R. H.
    Stride, E.
    Olivo, A.
    SCIENTIFIC REPORTS, 2015, 5
  • [46] Ultrasonically modulated X-ray phase contrast imaging
    Hamilton, Theron J.
    Cao, Guohua
    Bailat, Claude J.
    Wands, Jack
    Gehring, Stephan
    Rose-Petruck, Christoph
    Diebold, Gerald J.
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 1108 - +
  • [47] Phase-contrast X-ray imaging of breast
    Keyrilainen, Jani
    Bravin, Alberto
    Fernandez, Manuel
    Tenhunen, Mikko
    Virkkunen, Pekka
    Suortti, Pekka
    ACTA RADIOLOGICA, 2010, 51 (08) : 866 - 884
  • [48] Hard X-ray phase-contrast imaging
    Gao, D.C.
    Pogany, A.
    Stevenson, A.W.
    Gureyev, T.
    Wilkins, S.W.
    Mai, Zhen-Hong
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (12): : 2367 - 2368
  • [49] X-ray phase contrast imaging of spherical capsules
    Fourmaux, S.
    Hallin, E.
    Krol, A.
    Bourgade, J-L
    Kieffer, J-C
    OPTICS EXPRESS, 2020, 28 (09) : 13978 - 13990
  • [50] Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast
    T. P. Millard
    M. Endrizzi
    N. Everdell
    L. Rigon
    F. Arfelli
    R. H. Menk
    E. Stride
    A. Olivo
    Scientific Reports, 5