Totally acyclic complexes and locally Gorenstein rings

被引:3
|
作者
Christensen, Lars Winther [1 ]
Kato, Kiriko [2 ]
机构
[1] Texas Tech Univ, Lubbock, TX 79409 USA
[2] Osaka Prefecture Univ, Sakai, Osaka 5998531, Japan
关键词
Gorenstein ring; totally acyclic complex; MODULES;
D O I
10.1142/S0219498818500391
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A commutative noetherian ring with a dualizing complex is Gorenstein if and only if every acyclic complex of injective modules is totally acyclic. We extend this characterization, which is due to Iyengar and Krause, to arbitrary commutative noetherian rings, i.e. we remove the assumption about a dualizing complex. In this context Gorenstein, of course, means locally Gorenstein at every prime.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ACCEPTABLE RINGS AND HOMOMORPHIC IMAGES OF GORENSTEIN RINGS
    SHARP, RY
    JOURNAL OF ALGEBRA, 1977, 44 (01) : 246 - 261
  • [42] Homotopy categories of totally acyclic complexes with applications to the flat-cotorsion theory
    Christensen, Lars Winther
    Estrada, Sergio
    Thompson, Peder
    CATEGORICAL, HOMOLOGICAL AND COMBINATORIAL METHODS IN ALGEBRA, 2020, 751 : 99 - 118
  • [43] Generalized Gorenstein Arf rings
    Celikbas, Ela
    Celikbas, Olgur
    Goto, Shiro
    Taniguchi, Naoki
    ARKIV FOR MATEMATIK, 2019, 57 (01): : 35 - 53
  • [44] BURNSIDE RINGS WHICH ARE GORENSTEIN
    GUSTAFSON, WH
    COMMUNICATIONS IN ALGEBRA, 1977, 5 (01) : 1 - 15
  • [45] DUALITY OVER GORENSTEIN RINGS
    FOSSUM, R
    MATHEMATICA SCANDINAVICA, 1970, 26 (01) : 165 - &
  • [46] Remarks on almost Gorenstein rings
    Endo, Naoki
    Matsuoka, Naoyuki
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (07) : 2884 - 2891
  • [47] ON THE GORENSTEIN PROPERTY OF FORM RINGS
    HERRMANN, M
    RIBBE, J
    SCHENZEL, P
    MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (02) : 301 - 309
  • [48] Hamiltonian tournaments and Gorenstein rings
    Ohsugi, H
    Hibi, T
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (04) : 463 - 470
  • [49] Tilting modules and Gorenstein rings
    Angeleri Hugel, Lidia
    Herbera, Dolors
    Trlifaj, Jan
    FORUM MATHEMATICUM, 2006, 18 (02) : 211 - 229
  • [50] Gorenstein Witt rings II
    Fitzgerald, RW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (03): : 499 - 519