Totally acyclic complexes and locally Gorenstein rings

被引:3
|
作者
Christensen, Lars Winther [1 ]
Kato, Kiriko [2 ]
机构
[1] Texas Tech Univ, Lubbock, TX 79409 USA
[2] Osaka Prefecture Univ, Sakai, Osaka 5998531, Japan
关键词
Gorenstein ring; totally acyclic complex; MODULES;
D O I
10.1142/S0219498818500391
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A commutative noetherian ring with a dualizing complex is Gorenstein if and only if every acyclic complex of injective modules is totally acyclic. We extend this characterization, which is due to Iyengar and Krause, to arbitrary commutative noetherian rings, i.e. we remove the assumption about a dualizing complex. In this context Gorenstein, of course, means locally Gorenstein at every prime.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Almost Gorenstein rings
    Goto, Shiro
    Matsuoka, Naoyuki
    Tran Thi Phuong
    JOURNAL OF ALGEBRA, 2013, 379 : 355 - 381
  • [32] Rings that are almost Gorenstein
    Huneke, Craig
    Vraciu, Adela
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 225 (01) : 85 - 102
  • [33] A construction of Gorenstein rings
    D'Anna, Marco
    JOURNAL OF ALGEBRA, 2006, 306 (02) : 507 - 519
  • [34] Gorenstein Hereditary Rings
    Yan, Meiqi
    Yao, Hailou
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (02) : 124 - 138
  • [35] Totally Acyclic Approximations
    Petter A. Bergh
    David A. Jorgensen
    W. Frank Moore
    Applied Categorical Structures, 2021, 29 : 729 - 745
  • [36] LOCALLY GORENSTEIN HOMOMORPHISMS
    AVRAMOV, LL
    FOXBY, HB
    AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (05) : 1007 - 1047
  • [37] RESTRICTED GORENSTEIN RINGS
    ZAKS, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1969, 13 (04) : 796 - &
  • [38] Gorenstein injective and gorenstein flat resolution of modules over Gorenstein rings
    Asadollahi, J
    Salarian, S
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (11) : 4415 - 4432
  • [39] Gorenstein flat covers of modules over Gorenstein rings
    Enochs, E
    Xu, JZ
    JOURNAL OF ALGEBRA, 1996, 181 (01) : 288 - 313
  • [40] Gorenstein rings through face rings of manifolds
    Novik, Isabella
    Swartz, Ed
    COMPOSITIO MATHEMATICA, 2009, 145 (04) : 993 - 1000