Totally acyclic complexes and locally Gorenstein rings

被引:3
|
作者
Christensen, Lars Winther [1 ]
Kato, Kiriko [2 ]
机构
[1] Texas Tech Univ, Lubbock, TX 79409 USA
[2] Osaka Prefecture Univ, Sakai, Osaka 5998531, Japan
关键词
Gorenstein ring; totally acyclic complex; MODULES;
D O I
10.1142/S0219498818500391
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A commutative noetherian ring with a dualizing complex is Gorenstein if and only if every acyclic complex of injective modules is totally acyclic. We extend this characterization, which is due to Iyengar and Krause, to arbitrary commutative noetherian rings, i.e. we remove the assumption about a dualizing complex. In this context Gorenstein, of course, means locally Gorenstein at every prime.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Thick subcategories over Gorenstein local rings that are locally hypersurfaces on the punctured spectra
    Takahashi, Ryo
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (02) : 357 - 374
  • [22] Gorenstein flatness and injectivity over Gorenstein rings
    WeiLing Song
    ZhaoYong Huang
    Science in China Series A: Mathematics, 2008, 51 : 215 - 218
  • [23] Gorenstein flatness and injectivity over Gorenstein rings
    SONG WeiLing HUANG ZhaoYong~+ Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2008, (02) : 215 - 218
  • [24] Gorenstein flatness and injectivity over Gorenstein rings
    Song WeiLing
    Huang ZhaoYong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (02): : 215 - 218
  • [25] Gorenstein injective modules over Gorenstein rings
    Enochs, EE
    Jenda, OMG
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) : 3489 - 3496
  • [26] STRETCHED GORENSTEIN RINGS
    SALLY, JD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 20 (AUG): : 19 - 26
  • [27] Totally Acyclic Approximations
    Bergh, Petter A.
    Jorgensen, David A.
    Moore, W. Frank
    APPLIED CATEGORICAL STRUCTURES, 2021, 29 (04) : 729 - 745
  • [28] GORENSTEIN MODIFICATIONS AND Q-GORENSTEIN RINGS
    Dao, Hailong
    Iyama, Osamu
    Takahashi, Ryo
    Wemyss, Michael
    JOURNAL OF ALGEBRAIC GEOMETRY, 2020, 29 (04) : 729 - 751
  • [29] GORENSTEIN WITT RINGS
    FITZGERALD, RW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (05): : 1186 - 1202
  • [30] SYZYGIES AND GORENSTEIN RINGS
    HOSHINO, M
    ARCHIV DER MATHEMATIK, 1990, 55 (04) : 355 - 360