Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system

被引:53
|
作者
Han, Jiquan [1 ]
Feng, Jianmei [1 ,2 ]
Hou, Tianfang [1 ]
Peng, Xueyuan [1 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 Xianning West Rd, Xian 710049, Peoples R China
[2] An Hui Lab Compressor Technol, State Key Lab Compressor Technol, Hefei, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian, Peoples R China
关键词
CFD; entrainment performance; hydrogen recirculation; multi-nozzle ejector; proton exchange membrane fuel cell (PEMFC); ANODE RECIRCULATION; HYDROGEN PUMP; DESIGN; OPTIMIZATION; PARAMETERS; OPERATION; CYCLE;
D O I
10.1002/er.5996
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to its merit of no consuming energy, no moving part, and less requiring space, and maintenance, the ejector is one of the most promising hydrogen recirculation devices for proton exchange membrane fuel cell (PEMFC) applications. However, the prominent problem is its poor adaptability of the conventional ejector to meet the power range requirements of the PEMFC system. Thus, a multi-nozzle ejector was investigated to widen the applicable power range of a PEMFC system. The designed multi-nozzle ejector consists of one central nozzle (CN) and two symmetrical nozzles (SNs). The CN mode is activated under low power conditions, while the SNs mode is switched to adapt high power conditions. A 3D computational fluid dynamics (CFD) model was established to simulate the performance of ejectors, and an experimental test bench was built to validate the accuracy of the CFD model. The results indicated that the mixing chamber diameter (D-m) and throat tilt angle of SNs (alpha(t)) have a significant effect on the entrainment performance. It was found that the multi-nozzle ejector can broaden the hydrogen supply range from 0.27 to 1.6 g/s (22-100 kW) with the optimal combination of aD(m)of 5.0 mm and alpha(t)of 8 degrees. Nevertheless, the hydrogen supply range is 0.48 to 1.6 g/s (37-100 kW) when using a conventional single-nozzle ejector with aD(m)of 5.0 mm. Moreover, the temperature, pressure, and relative humidity of the secondary flow have a great influence on the hydrogen entrainment ratio with the change of stack power.
引用
收藏
页码:3031 / 3048
页数:18
相关论文
共 50 条
  • [31] Performance of a proton exchange membrane fuel cell stack
    Johnson, R
    Morgan, C
    Witmer, D
    Johnson, T
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (08) : 879 - 887
  • [32] Performance of a proton exchange membrane fuel cell stack
    Johnson, R.
    Morgan, C.
    Witmer, D.
    Johnson, T.
    International Journal of Non-Linear Mechanics, 2001, 36 (08) : 879 - 887
  • [33] Analysis of proton exchange membrane fuel cell performance with a new generation of proton exchange membrane
    Hu, J
    Zhou, LR
    Zhu, Y
    Li, W
    Li, Z
    Niu, SP
    Lu, L
    Zhang, WX
    He, Y
    HYDROGEN ENERGY PROGRESS XIII, VOLS 1 AND 2, PROCEEDINGS, 2000, : 821 - 825
  • [34] Performance analysis and parametric studies on the primary nozzle of ejectors in proton exchange membrane fuel cell systems
    Feng, Jianmei
    Han, Jiquan
    Hou, Tianfang
    Peng, Xueyuan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 13741 - 13760
  • [35] Cost reduced design and performance test of the ejector for a proton exchange membrane fuel cell based on the sensitivity analysis
    Kim, Minjin
    Sohn, Young-Jun
    Lee, Won-Yong
    FUEL CELL SEMINAR 2007, 2008, 12 (01): : 147 - 155
  • [36] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Sun, Wenhui
    Zhang, Hailun
    Jia, Lei
    Xue, Haoyuan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (23) : 13681 - 13697
  • [37] Droplet Dynamics in a Proton Exchange Membrane Fuel Cell with Ejector-Based Recirculation
    Liu, Yang
    Luo, Xiaobing
    Tu, Zhengkai
    Chan, Siew Hwa
    ENERGY & FUELS, 2021, 35 (14) : 11533 - 11544
  • [38] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Wenhui Sun
    Hailun Zhang
    Lei Jia
    Haoyuan Xue
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 13681 - 13697
  • [39] Performance analysis and prediction of ejector based hydrogen recycle system under variable proton exchange membrane fuel cell working conditions
    Hailun, Zhang
    Sun, Wenxu
    Xue, Haoyuan
    Sun, Wenhui
    Wang, Lei
    Jia, Lei
    APPLIED THERMAL ENGINEERING, 2021, 197
  • [40] Parametric study of the proton exchange membrane fuel cell for investigation of enhanced performance used in fuel cell vehicles
    Babu, Attuluri R. Vijay
    Kumar, P. Manoj
    Rao, G. Srinivasa
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (04) : 3953 - 3958