Droplet Dynamics in a Proton Exchange Membrane Fuel Cell with Ejector-Based Recirculation

被引:18
|
作者
Liu, Yang [1 ]
Luo, Xiaobing [1 ]
Tu, Zhengkai [1 ]
Chan, Siew Hwa [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
[2] Nanyang Technol Univ, Energy Res Inst, Singapore 637553, Singapore
基金
中国国家自然科学基金;
关键词
NUMERICAL SIMULATIONS; WATER DISTRIBUTION; FLOW CHANNEL; IN-SITU; PEMFC; OPERATION; TRANSPORT; BEHAVIOR; OPTIMIZATION; PERFORMANCE;
D O I
10.1021/acs.energyfuels.1c01623
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effective water management plays a significant role in improving the performance and lifetime of proton exchange membrane fuel cells (PEMFCs). The ejector can take full advantage of the huge pressure potential between the high-pressure fuel tank and the PEMFCs to realize fuel gas recovery, and it is usually adopted for the auxiliary drainage of hydrogen/oxygen stacks. In this study, the dynamic behavior of liquid water droplets in the cathode flow channel of a PEMFC operating in ejector-based recirculation mode was numerically investigated. The effects of the operating current density of the fuel cell as well as the pore size of the water inlet boundary on the droplet behavior were studied, and the number of contact surfaces between the droplet and the flow channel were investigated. The results show that the speed of water removal from the flow channel with ejector-based recirculation can be increased by 37.5% when the fuel cell operates at 1.0 A cm(-2). Moreover, the hydrophobic side and top surfaces are more suitable for water slug removal when the PEMFC operates at a high current density, owing to the shorter drainage period. We herein provide recommendations for effectively enhancing the water management of a PEMFC with ejector-based gas recirculation.
引用
收藏
页码:11533 / 11544
页数:12
相关论文
共 50 条
  • [1] Performance degradation of a proton exchange membrane fuel cell with dual ejector-based recirculation
    Liu, Yang
    Xiao, Biao
    Zhao, Junjie
    Fan, Lixin
    Luo, Xiaobing
    Tu, Zhengkai
    Hwa Chan, Siew
    Tu, Zhengkai (tzklq@hust.edu.cn), 1600, Elsevier Ltd (12):
  • [2] Performance degradation of a proton exchange membrane fuel cell with dual ejector-based recirculation
    Liu, Yang
    Xiao, Biao
    Zhao, Junjie
    Fan, Lixin
    Luo, Xiaobing
    Tu, Zhengkai
    Chan, Siew Hwa
    ENERGY CONVERSION AND MANAGEMENT-X, 2021, 12
  • [3] Modeling and Control of Ejector-Based Hydrogen Circulation System for Proton Exchange Membrane Fuel Cell Systems
    Xu, Zecheng
    Liu, Bo
    Tong, Yuqi
    Dong, Zuomin
    Feng, Yanbiao
    ENERGIES, 2024, 17 (11)
  • [4] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Sun, Wenhui
    Zhang, Hailun
    Jia, Lei
    Xue, Haoyuan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (23) : 13681 - 13697
  • [5] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Wenhui Sun
    Hailun Zhang
    Lei Jia
    Haoyuan Xue
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 13681 - 13697
  • [6] Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system
    Yin, Yan
    Fan, Mingzhe
    Jiao, Kui
    Du, Qing
    Qin, Yanzhou
    ENERGY CONVERSION AND MANAGEMENT, 2016, 126 : 1106 - 1117
  • [7] Improved PEM fuel cell system operation with cascaded stack and ejector-based recirculation
    Jenssen, Dirk
    Berger, Oliver
    Krewer, Ulrike
    APPLIED ENERGY, 2017, 195 : 324 - 333
  • [8] Numerical optimization of ejector for enhanced hydrogen recirculation in proton exchange membrane fuel cells
    Arabbeiki, Masoud
    Mansourkiaei, Mohsen
    Ferrero, Domenico
    Santarelli, Massimo
    JOURNAL OF POWER SOURCES, 2025, 641
  • [9] Hydrogen Excess Ratio Control of Ejector-based Hydrogen Recirculation PEM Fuel Cell System
    Qin, Biao
    Wang, Xinli
    Wang, Lei
    Zhao, Hongxia
    Yin, Xiaohong
    Jia, Lei
    2019 34RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2019, : 648 - 653
  • [10] Proton-exchange membrane fuel cells with ejector-type anodic recirculation systems
    Yang, Zhuqiang
    Wang, Kun
    Xu, Youwei
    Li, Dongming
    Chen, Guiyin
    Lv, Ping
    Zhang, Bo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 96 : 408 - 418