Droplet Dynamics in a Proton Exchange Membrane Fuel Cell with Ejector-Based Recirculation

被引:18
|
作者
Liu, Yang [1 ]
Luo, Xiaobing [1 ]
Tu, Zhengkai [1 ]
Chan, Siew Hwa [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
[2] Nanyang Technol Univ, Energy Res Inst, Singapore 637553, Singapore
基金
中国国家自然科学基金;
关键词
NUMERICAL SIMULATIONS; WATER DISTRIBUTION; FLOW CHANNEL; IN-SITU; PEMFC; OPERATION; TRANSPORT; BEHAVIOR; OPTIMIZATION; PERFORMANCE;
D O I
10.1021/acs.energyfuels.1c01623
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effective water management plays a significant role in improving the performance and lifetime of proton exchange membrane fuel cells (PEMFCs). The ejector can take full advantage of the huge pressure potential between the high-pressure fuel tank and the PEMFCs to realize fuel gas recovery, and it is usually adopted for the auxiliary drainage of hydrogen/oxygen stacks. In this study, the dynamic behavior of liquid water droplets in the cathode flow channel of a PEMFC operating in ejector-based recirculation mode was numerically investigated. The effects of the operating current density of the fuel cell as well as the pore size of the water inlet boundary on the droplet behavior were studied, and the number of contact surfaces between the droplet and the flow channel were investigated. The results show that the speed of water removal from the flow channel with ejector-based recirculation can be increased by 37.5% when the fuel cell operates at 1.0 A cm(-2). Moreover, the hydrophobic side and top surfaces are more suitable for water slug removal when the PEMFC operates at a high current density, owing to the shorter drainage period. We herein provide recommendations for effectively enhancing the water management of a PEMFC with ejector-based gas recirculation.
引用
收藏
页码:11533 / 11544
页数:12
相关论文
共 50 条
  • [21] Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel
    Ben Amara, Mohamed El Amine
    Ben Nasrallah, Sassi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (02) : 1333 - 1342
  • [22] Structural optimization of hydrogen recirculation ejector for proton exchange membrane fuel cells considering the boundary layer separation effect
    Bian, Jiang
    Zhang, Yue
    Liu, Yang
    Gong, Liang
    Cao, Xuewen
    JOURNAL OF CLEANER PRODUCTION, 2023, 397
  • [23] Reactant recirculation system utilizing pressure swing for proton exchange membrane fuel cell
    Uno, Masatoshi
    Shimada, Takanobu
    Tanaka, Koji
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2558 - 2566
  • [24] Effect of operating conditions on performance of proton exchange membrane fuel cell with anode recirculation
    Xia, Zhifeng
    Wang, Bowen
    Yang, Zirong
    Wu, Kangcheng
    Du, Qing
    Jiao, Kui
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1829 - 1834
  • [25] Experimental investigation of the effect of hydrogen recirculation on the performance of a proton exchange membrane fuel cell
    Yu, Xingzi
    Fan, Jinwei
    Zhou, Yuhong
    Hao, Dong
    Chen, Jinrui
    Yu, Tao
    Zhang, Caizhi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (02) : 1183 - 1191
  • [26] Cost reduced design and performance test of the ejector for a proton exchange membrane fuel cell based on the sensitivity analysis
    Kim, Minjin
    Sohn, Young-Jun
    Lee, Won-Yong
    FUEL CELL SEMINAR 2007, 2008, 12 (01): : 147 - 155
  • [27] Numerical simulation of droplet dynamics in a micro-channel of a proton exchange membrane fuel
    El Amine, Ben Amara Mohamed
    Sassi, Ben Nasrallah
    2014 5TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2014,
  • [28] Droplet dynamics in a proton exchange membrane fuel cell flow field design with 3D geometry
    Li, Zijun
    Wang, Shubo
    Li, Weiwei
    Zhu, Tong
    Fan, Zhaohu
    Xie, Xiaofeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (31) : 16693 - 16707
  • [29] Hydrogen-recirculating ejector for proton exchange membrane fuel cell system: Design and performance
    Xu, Sichuan
    Han, Wenyan
    Wang, Gui
    Ni, Huaisheng
    Tongji Daxue Xuebao/Journal of Tongji University, 2013, 41 (01): : 128 - 134
  • [30] New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system
    Zhu, Yinhai
    Li, Yanzhong
    JOURNAL OF POWER SOURCES, 2009, 191 (02) : 510 - 519