Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system

被引:53
|
作者
Han, Jiquan [1 ]
Feng, Jianmei [1 ,2 ]
Hou, Tianfang [1 ]
Peng, Xueyuan [1 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 Xianning West Rd, Xian 710049, Peoples R China
[2] An Hui Lab Compressor Technol, State Key Lab Compressor Technol, Hefei, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian, Peoples R China
关键词
CFD; entrainment performance; hydrogen recirculation; multi-nozzle ejector; proton exchange membrane fuel cell (PEMFC); ANODE RECIRCULATION; HYDROGEN PUMP; DESIGN; OPTIMIZATION; PARAMETERS; OPERATION; CYCLE;
D O I
10.1002/er.5996
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to its merit of no consuming energy, no moving part, and less requiring space, and maintenance, the ejector is one of the most promising hydrogen recirculation devices for proton exchange membrane fuel cell (PEMFC) applications. However, the prominent problem is its poor adaptability of the conventional ejector to meet the power range requirements of the PEMFC system. Thus, a multi-nozzle ejector was investigated to widen the applicable power range of a PEMFC system. The designed multi-nozzle ejector consists of one central nozzle (CN) and two symmetrical nozzles (SNs). The CN mode is activated under low power conditions, while the SNs mode is switched to adapt high power conditions. A 3D computational fluid dynamics (CFD) model was established to simulate the performance of ejectors, and an experimental test bench was built to validate the accuracy of the CFD model. The results indicated that the mixing chamber diameter (D-m) and throat tilt angle of SNs (alpha(t)) have a significant effect on the entrainment performance. It was found that the multi-nozzle ejector can broaden the hydrogen supply range from 0.27 to 1.6 g/s (22-100 kW) with the optimal combination of aD(m)of 5.0 mm and alpha(t)of 8 degrees. Nevertheless, the hydrogen supply range is 0.48 to 1.6 g/s (37-100 kW) when using a conventional single-nozzle ejector with aD(m)of 5.0 mm. Moreover, the temperature, pressure, and relative humidity of the secondary flow have a great influence on the hydrogen entrainment ratio with the change of stack power.
引用
收藏
页码:3031 / 3048
页数:18
相关论文
共 50 条
  • [41] Modeling And Analysis of Hydrogen Supply System with Dual Ejector Concept for Vehicular Proton Exchange Membrane Fuel Cell
    Le Tri, Dat Truong
    Vu, Hoang Nghia
    Kim, Younghyeon
    Yu, Sangseok
    PROCEEDINGS OF ASME 2023 17TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2023, 2023,
  • [42] Optimization of hydrogen ejector structure in proton exchange membrane fuel cell system under wide operating conditions
    Wu, Aihua
    Hao, Zian
    He, Guogeng
    Cai, Dehua
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 522 - 542
  • [43] Performance Investigation of Proton-Exchange Membrane Fuel Cell with Dean Flow Channels
    Wei, Lin
    Liao, Zihao
    Dafalla, Ahmed Mohmed
    Jiang, Fangming
    ENERGY TECHNOLOGY, 2022, 10 (03)
  • [44] Experimental investigation of the effect of hydrogen recirculation on the performance of a proton exchange membrane fuel cell
    Yu, Xingzi
    Fan, Jinwei
    Zhou, Yuhong
    Hao, Dong
    Chen, Jinrui
    Yu, Tao
    Zhang, Caizhi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (02) : 1183 - 1191
  • [45] Modeling and Control of Ejector-Based Hydrogen Circulation System for Proton Exchange Membrane Fuel Cell Systems
    Xu, Zecheng
    Liu, Bo
    Tong, Yuqi
    Dong, Zuomin
    Feng, Yanbiao
    ENERGIES, 2024, 17 (11)
  • [46] Study on performance of proton exchange membrane fuel cell with reformate fuel
    Yu, H.M.
    Yi, B.L.
    Bi, K.W.
    Hou, Z.J.
    Lin, Z.Y.
    Han, M.
    Dianyuan Jishu/Chinese Journal of Power Sources, 2001, 25 (04):
  • [47] The performance analysis of a multi-duct proton exchange membrane fuel cell cathode
    Patel, Siddharth
    Bansode, A. S.
    Sundararajan, T.
    Das, Sarit Kumar
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2008, 5 (1-2) : 35 - 54
  • [48] Dynamic investigation on Proton Exchange Membrane fuel cell systems
    Haubrock, J.
    Heideck, G.
    Styczynski, Z.
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 2486 - +
  • [49] Experimental Investigation of Irreversibility of a Proton Exchange Membrane Fuel Cell
    Khazaee, I.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (02):
  • [50] INVESTIGATION OF CASCADE COOLING SYSTEM FOR DYNAMIC OPERATION OF PROTON EXCHANGE MEMBRANE FUEL CELL
    Woo, Jongbin
    Kim, Younghyeon
    Yu, Sangseok
    PROCEEDINGS OF THE ASME 2022 POWER CONFERENCE, POWER2022, 2022,