Self-updating Clustering Algorithm for Interval-valued Data

被引:0
|
作者
Hung, Wen-Liang [1 ]
Yang, Jenn-Hwai [2 ]
Shen, Kuan-Fu [3 ]
机构
[1] Natl Hsinchu Univ Educ, Dept Appl Math, Hsinchu, Taiwan
[2] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan
[3] Chien Hsin Univ Sci & Technol, Dept Finance, Taoyuan, Taiwan
关键词
DISTANCES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a robust automatic clustering algorithm based on the Hausdorff distance, called the self-updating clustering algorithm, for interval-valued data. This algorithm can simulate the self-clustering process. At the end of the clustering process, interval-valued data belonging to the same cluster converge to the same position, which represents the cluster's center. The numerical results show the effectiveness of the proposed algorithm using the overall error rate of classification (OERC) and the corrected rand (CR) index as criteria. An example of exoplanet data is also presented.
引用
收藏
页码:1494 / 1500
页数:7
相关论文
共 50 条
  • [31] Fuzzy c-ordered medoids clustering for interval-valued data
    D'Urso, Pierpaolo
    Leski, Jacek M.
    PATTERN RECOGNITION, 2016, 58 : 49 - 67
  • [32] Exponential distance-based fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    Massari, Riccardo
    De Giovanni, Livia
    Cappelli, Carmela
    FUZZY OPTIMIZATION AND DECISION MAKING, 2017, 16 (01) : 51 - 70
  • [33] Exponential distance-based fuzzy clustering for interval-valued data
    Pierpaolo D’Urso
    Riccardo Massari
    Livia De Giovanni
    Carmela Cappelli
    Fuzzy Optimization and Decision Making, 2017, 16 : 51 - 70
  • [34] Clustering of interval-valued data using adaptive squared Euclidean distances
    de Souza, RMCR
    de Carvalho, RDT
    Silva, FCD
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 775 - 780
  • [35] Weight Pair Group Average Mean Clustering for Interval-valued Data
    Galdino, Sergio
    Maciel, Paulo
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 118 - 124
  • [36] Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances
    de Carvalho, Francisco de A. T.
    Lechevallier, Yves
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2009, 39 (06): : 1295 - 1306
  • [37] Novel algorithm of FCM clustering for interval valued data
    Xi'an Dianzi Keji Daxue Xuebao, 5 (604-609):
  • [38] The clustering methods for interval-valued fuzzy sets
    Meng, G.
    Zhang, X.
    Zheng, Y.
    2001, Xi'an Jiatong University (18):
  • [39] Testing of mean interval for interval-valued data
    Roy, Anuradha
    Klein, Daniel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (20) : 5028 - 5044
  • [40] Fuzzy clustering of interval-valued data with City-Block and Hausdorff distances
    de Carvalho, Francisco de A. T.
    Simoes, Eduardo C.
    NEUROCOMPUTING, 2017, 266 : 659 - 673