Exponential distance-based fuzzy clustering for interval-valued data

被引:36
|
作者
D'Urso, Pierpaolo [1 ]
Massari, Riccardo [1 ]
De Giovanni, Livia [2 ]
Cappelli, Carmela [3 ]
机构
[1] Sapienza Univ Rome, Dipartimento Sci Sociali & Econ, Ple Aldo Moro 5, I-00185 Rome, Italy
[2] LUISS Guido Carli, Dipartimento Sci Polit, Viale Romania 32, I-00197 Rome, Italy
[3] Univ Federico II Napoli, Dipartimento Sci Polit, Via L Rodino 22, I-80138 Naples, Italy
关键词
Interval-valued data; Outlier interval data; Fuzzy C-medoids clustering; Exponential distance; Robust clustering; COMPONENT ANALYSIS; ALGORITHMS;
D O I
10.1007/s10700-016-9238-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In several real life and research situations data are collected in the form of intervals, the so called interval-valued data. In this paper a fuzzy clustering method to analyse interval-valued data is presented. In particular, we address the problem of interval-valued data corrupted by outliers and noise. In order to cope with the presence of outliers we propose to employ a robust metric based on the exponential distance in the framework of the Fuzzy C-medoids clustering mode, the Fuzzy C-medoids clustering model for interval-valued data with exponential distance. The exponential distance assigns small weights to outliers and larger weights to those points that are more compact in the data set, thus neutralizing the effect of the presence of anomalous interval-valued data. Simulation results pertaining to the behaviour of the proposed approach as well as two empirical applications are provided in order to illustrate the practical usefulness of the proposed method.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 50 条
  • [1] Exponential distance-based fuzzy clustering for interval-valued data
    Pierpaolo D’Urso
    Riccardo Massari
    Livia De Giovanni
    Carmela Cappelli
    Fuzzy Optimization and Decision Making, 2017, 16 : 51 - 70
  • [2] Distance-based linear discriminant analysis for interval-valued data
    Ramos-Guajardo, Ana B.
    Grzegorzewski, Przemyslaw
    INFORMATION SCIENCES, 2016, 372 : 591 - 607
  • [3] Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters
    Arefi, Mohsen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) : 1339 - 1351
  • [4] Trimmed fuzzy clustering for interval-valued data
    Pierpaolo D’Urso
    Livia De Giovanni
    Riccardo Massari
    Advances in Data Analysis and Classification, 2015, 9 : 21 - 40
  • [5] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [6] Fuzzy clustering of spatial interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    SPATIAL STATISTICS, 2023, 57
  • [7] Distance-Based Knowledge Measure and Entropy for Interval-Valued Intuitionistic Fuzzy Sets
    Suo, Chunfeng
    Li, Xuanchen
    Li, Yongming
    MATHEMATICS, 2023, 11 (16)
  • [8] Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance and Entropy Regularization for Interval-Valued Data
    Rizo Rodriguez, Sara Ines
    Tenorio de Carvalho, Francisco de Assis
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 695 - 705
  • [9] Interval-valued fuzzy clustering
    Pagola, M.
    Jurio, A.
    Barrenechea, E.
    Fernandez, J.
    Bustince, H.
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 1288 - 1294
  • [10] A Euclidean Distance-based parameter reduction algorithm for interval-valued fuzzy soft sets
    Qin, Hongwu
    Wang, Yanan
    Ma, Xiuqin
    Wang, Jin
    Jiang, Chen
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234