Self-updating Clustering Algorithm for Interval-valued Data

被引:0
|
作者
Hung, Wen-Liang [1 ]
Yang, Jenn-Hwai [2 ]
Shen, Kuan-Fu [3 ]
机构
[1] Natl Hsinchu Univ Educ, Dept Appl Math, Hsinchu, Taiwan
[2] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan
[3] Chien Hsin Univ Sci & Technol, Dept Finance, Taoyuan, Taiwan
关键词
DISTANCES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a robust automatic clustering algorithm based on the Hausdorff distance, called the self-updating clustering algorithm, for interval-valued data. This algorithm can simulate the self-clustering process. At the end of the clustering process, interval-valued data belonging to the same cluster converge to the same position, which represents the cluster's center. The numerical results show the effectiveness of the proposed algorithm using the overall error rate of classification (OERC) and the corrected rand (CR) index as criteria. An example of exoplanet data is also presented.
引用
收藏
页码:1494 / 1500
页数:7
相关论文
共 50 条
  • [41] The Sign Test for Interval-Valued Data
    Grzegorzewski, Przemyslaw
    Spiewak, Martyna
    SOFT METHODS FOR DATA SCIENCE, 2017, 456 : 269 - 276
  • [42] Matrix Factorization with Interval-Valued Data
    Li, Mao-Lin
    Di Mauro, Francesco
    Candan, K. Selcuk
    Sapino, Maria Luisa
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (04) : 1644 - 1658
  • [43] Regression analysis for interval-valued data
    Billard, L
    Diday, E
    DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 369 - 374
  • [44] Model averaging for interval-valued data
    Sun, Yuying
    Zhang, Xinyu
    Wan, Alan T. K.
    Wang, Shouyang
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 301 (02) : 772 - 784
  • [45] Weighted principal component analysis for interval-valued data based on fuzzy clustering
    Sato-Ilic, M
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 4476 - 4482
  • [46] Interval-valued functional clustering based on the Wasserstein distance with application to stock data
    Sun, Lirong
    Zhu, Lijun
    Li, Wencheng
    Zhang, Chonghui
    Balezentis, Tomas
    INFORMATION SCIENCES, 2022, 606 : 910 - 926
  • [47] Clustering interval-valued data with adaptive Euclidean and City-Block distances
    Rizo Rodriguez, Sara Ines
    Tenorio de Carvalho, Francisco de Assis
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [48] Spatial analysis for interval-valued data
    Workman, Austin
    Song, Joon Jin
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (10) : 1946 - 1960
  • [49] Linear regression with interval-valued data
    Sun, Yan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [50] Matrix Factorization with Interval-Valued Data
    Li, Mao-Lin
    Di Mauro, Francesco
    Candan, K. Selcuk
    Sapino, Maria Luisa
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 2042 - 2043