Performance comparison of parallel geometric and algebraic multigrid preconditioners for the bidomain equations

被引:0
|
作者
Otaviano Campos, Fernando [1 ]
Sachetto Oliveira, Rafael [1 ]
Weber dos Santos, Rodrigo [1 ]
机构
[1] Univ Fed Juiz de Fora, Dept Comp Sci, FISIOCOMP, Lab Computat Physiol, Juiz de Fora, MG, Brazil
来源
COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS | 2006年 / 3991卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to discuss parallel preconditioning techniques to solve the elliptic portion (since it dominates computation) of the bidomain model, a non-linear system of partial differential equations that is widely used for describing electrical activity in the heart. Specifically, we assessed the performance of parallel multigrid preconditioners for a conjugate gradient solver. We compared two different approaches: the Geometric and Algebraic Multigrid Methods. The implementation is based on the PETSc library and we reported results for a 6-node Athlon 64 cluster. The results suggest that the algebraic multigrid preconditioner performs better than the geometric multigrid method for the cardiac bidomain equations.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [41] Optimization of Serial and Parallel Communications for Parallel Geometric Multigrid Method
    Nakajima, Kengo
    2014 20TH IEEE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2014, : 25 - 32
  • [42] Multiscale representation and segmentation of hyperspectral imagery using geometric partial differential equations and algebraic multigrid methods
    Duarte-Carvajalino, Julio M.
    Sapiro, Guillermio
    Velez-Reyes, Miguel
    Castillo, Paul E.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2418 - 2434
  • [43] Comparison of geometric and algebraic multigrid methods in edge-based finite-element analysis
    Watanabe, K
    Igarashi, H
    Honma, T
    IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (05) : 1672 - 1675
  • [44] Multigrid preconditioners for the hybridised discontinuous Galerkin discretisation of the shallow water equations
    Betteridge, Jack
    Gibson, Thomas H.
    Graham, Ivan G.
    Mueller, Eike H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
  • [45] GUIDANCE FOR CHOOSING MULTIGRID PRECONDITIONERS FOR SYSTEMS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Lee, B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2803 - 2831
  • [46] Parallel multigrid for anisotropic elliptic equations
    Prieto, M
    Santiago, R
    Espadas, D
    Llorente, IM
    Tirado, F
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (01) : 96 - 114
  • [47] A COMPARISON OF PARALLEL MULTIGRID STRATEGIES
    VANDEWALLE, S
    PIESSENS, R
    HYPERCUBE AND DISTRIBUTED COMPUTERS, 1989, : 65 - 79
  • [48] A COMPARISON OF TWO-LEVEL PRECONDITIONERS BASED ON MULTIGRID AND DEFLATION
    Tang, J. M.
    MacLachlan, S. P.
    Nabben, R.
    Vuik, C.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) : 1715 - 1739
  • [49] GEOMETRIC SOLUTIONS OF ALGEBRAIC EQUATIONS
    RIAZ, M
    AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (07): : 654 - &
  • [50] Parallel Solution Methods and Preconditioners for Evolution Equations
    Axelsson, Owe
    Neytcheva, Maya
    Liang, Zhao-Zheng
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (02) : 287 - 308