Performance comparison of parallel geometric and algebraic multigrid preconditioners for the bidomain equations

被引:0
|
作者
Otaviano Campos, Fernando [1 ]
Sachetto Oliveira, Rafael [1 ]
Weber dos Santos, Rodrigo [1 ]
机构
[1] Univ Fed Juiz de Fora, Dept Comp Sci, FISIOCOMP, Lab Computat Physiol, Juiz de Fora, MG, Brazil
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to discuss parallel preconditioning techniques to solve the elliptic portion (since it dominates computation) of the bidomain model, a non-linear system of partial differential equations that is widely used for describing electrical activity in the heart. Specifically, we assessed the performance of parallel multigrid preconditioners for a conjugate gradient solver. We compared two different approaches: the Geometric and Algebraic Multigrid Methods. The implementation is based on the PETSc library and we reported results for a 6-node Athlon 64 cluster. The results suggest that the algebraic multigrid preconditioner performs better than the geometric multigrid method for the cardiac bidomain equations.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [31] Parallel solution of the Bidomain equations with high resolutions
    Cai, X
    Lines, GT
    Tveito, A
    PARALLEL COMPUTING: SOFTWARE TECHNOLOGY, ALGORITHMS, ARCHITECTURES AND APPLICATIONS, 2004, 13 : 837 - 844
  • [32] Multigrid preconditioners for anisotropic space-fractional diffusion equations
    Donatelli, Marco
    Krause, Rolf
    Mazza, Mariarosa
    Trotti, Ken
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (03)
  • [33] A Comparison of Algebraic Multigrid Preconditioners using Graphics Processing Units and Multi-Core Central Processing Units
    Wagner, Markus
    Rupp, Karl
    Weinbub, Josef
    HIGH PERFORMANCE COMPUTING SYMPOSIUM 2012 (HPC 2012), 2012, 44 (06): : 99 - 106
  • [34] BoomerAMG:: A parallel algebraic multigrid solver and preconditioner
    Henson, VE
    Yang, UM
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (01) : 155 - 177
  • [35] Parallel algebraic multigrid based on subdomain blocking
    Krechel, A
    Stüben, K
    PARALLEL COMPUTING, 2001, 27 (08) : 1009 - 1031
  • [36] Application of Parallel Algebraic Multigrid Algorithms in Geophysics
    Chen Rui
    Tan Han-dong
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2710 - 2714
  • [37] Scalability analysis for parallel algebraic multigrid algorithms
    Graduate School, China Academy of Engineering Physics, Beijing 100088, China
    不详
    Jisuan Wuli, 2007, 4 (387-394): : 387 - 394
  • [38] Sparse approximate inverse smoothers for geometric and algebraic multigrid
    Bröker, O
    Grote, MJ
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (01) : 61 - 80
  • [39] Algebraic multigrid and algebraic multilevel methods: a theoretical comparison
    Notay, Y
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (5-6) : 419 - 451
  • [40] Parallel geometric multigrid for global weather prediction
    Buckeridge, Sean
    Scheichl, Robert
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (2-3) : 325 - 342