Performance comparison of parallel geometric and algebraic multigrid preconditioners for the bidomain equations

被引:0
|
作者
Otaviano Campos, Fernando [1 ]
Sachetto Oliveira, Rafael [1 ]
Weber dos Santos, Rodrigo [1 ]
机构
[1] Univ Fed Juiz de Fora, Dept Comp Sci, FISIOCOMP, Lab Computat Physiol, Juiz de Fora, MG, Brazil
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to discuss parallel preconditioning techniques to solve the elliptic portion (since it dominates computation) of the bidomain model, a non-linear system of partial differential equations that is widely used for describing electrical activity in the heart. Specifically, we assessed the performance of parallel multigrid preconditioners for a conjugate gradient solver. We compared two different approaches: the Geometric and Algebraic Multigrid Methods. The implementation is based on the PETSc library and we reported results for a 6-node Athlon 64 cluster. The results suggest that the algebraic multigrid preconditioner performs better than the geometric multigrid method for the cardiac bidomain equations.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [21] Multi-GPU Acceleration of Algebraic Multigrid Preconditioners
    Richter, Christian
    Schoeps, Sebastian
    Clemens, Markus
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2014), 2016, 23 : 83 - 90
  • [22] Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners
    Kourakos, George
    Harter, Thomas
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) : 851 - 867
  • [23] ALGEBRAIC MULTIGRID PRECONDITIONERS FOR MULTIPHASE FLOW IN POROUS MEDIA
    Bui, Quan M.
    Elman, Howard C.
    Moulton, J. David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S662 - S680
  • [24] Comparison of geometrical and algebraic multigrid preconditioners for data-sparse boundary element matrices
    Langer, U
    Pusch, D
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 130 - 137
  • [25] ALGEBRAIC MULTIGRID FOR STOKES EQUATIONS
    Notay, Yvan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S88 - S111
  • [26] ALGEBRAIC MULTIGRID FICTITIOUS DOMAIN PRECONDITIONERS ON QUASIHIERARCHICAL TRIANGULAR GRIDS
    HAKOPIAN, YR
    KUZNETSOV, YA
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1994, 9 (03) : 201 - 222
  • [27] GPU Acceleration of Algebraic Multigrid Preconditioners for Discrete Elliptic Field Problems
    Richter, Christian
    Schoeps, Sebastian
    Clemens, Markus
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 461 - 464
  • [28] Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD
    Lin, P. T.
    Shadid, J. N.
    Hu, J. J.
    Pawlowski, R. P.
    Cyr, E. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 782 - 793
  • [29] Algebraic multigrid for the nonlinear powerflow equations
    Lee, Barry
    Pereira Batista, Enrique
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (02)
  • [30] Multigrid preconditioners for anisotropic space-fractional diffusion equations
    Marco Donatelli
    Rolf Krause
    Mariarosa Mazza
    Ken Trotti
    Advances in Computational Mathematics, 2020, 46