Approximate Minimax Estimation of Functionals of Solutions to the Wave Equation under Nonlinear Observations

被引:1
|
作者
Kapustian, O. A. [1 ]
Nakonechnyi, O. G. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
关键词
minimax estimation; wave equation; rapidly oscillating coefficients; homogenized problem; uncertainty; approximate estimate;
D O I
10.1007/s10559-020-00300-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The authors consider the problem of minimax estimation of a functional of the solution to the wave equation with rapidly oscillating coefficients. The observation (output signal) is nonlinear (has the operator of superposition type). For the small parameter epsilon > 0, the existence of the solution of the original problem is proved using the traditional minimax approach. Transition to a homogenized parameter problem allows us to remove the nonlinearity in the observation. The main result of the paper is that the minimax estimate of the problem with homogenized parameters is an approximate minimax estimate of the original problem.
引用
收藏
页码:793 / 801
页数:9
相关论文
共 50 条
  • [41] Explicit solutions of nonlinear wave equation systems
    Ahmet Bekir
    Burcu Ayhan
    M. Naci zer
    Chinese Physics B, 2013, 22 (01) : 39 - 45
  • [42] Explicit travelling wave solutions to a nonlinear equation
    Zheng, Y
    Zhang, HQ
    ACTA PHYSICA SINICA, 2000, 49 (03) : 389 - 391
  • [43] Weak Solutions to a Nonlinear Variational Wave Equation
    Ping Zhang
    Yuxi Zheng
    Archive for Rational Mechanics and Analysis, 2003, 166 : 303 - 319
  • [44] Explicit travelling wave solutions to a nonlinear equation
    Zheng, Yun
    Zhang, Hongqing
    He Jishu/Nuclear Techniques, 2000, 23 (02): : 389 - 391
  • [45] Explicit solutions of nonlinear wave equation systems
    Bekir, Ahmet
    Ayhan, Burcu
    Ozer, M. Naci
    CHINESE PHYSICS B, 2013, 22 (01)
  • [46] Traveling wave solutions of the nonlinear Schrodinger equation
    Akbari-Moghanjoughi, M.
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [47] Conservative Solutions to a Nonlinear Variational Wave Equation
    Alberto Bressan
    Yuxi Zheng
    Communications in Mathematical Physics, 2006, 266 : 471 - 497
  • [48] Bifurcations and Exact Solutions in a Nonlinear Wave Equation
    Li, Zongguang
    Liu, Rui
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (07):
  • [49] Weak solutions to a nonlinear variational wave equation
    Zhang, P
    Zheng, YX
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 166 (04) : 303 - 319
  • [50] Blow up of the Solutions of Nonlinear Wave Equation
    Svetlin Georgiev Georgiev
    Boundary Value Problems, 2007