Approximate Minimax Estimation of Functionals of Solutions to the Wave Equation under Nonlinear Observations

被引:1
|
作者
Kapustian, O. A. [1 ]
Nakonechnyi, O. G. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
关键词
minimax estimation; wave equation; rapidly oscillating coefficients; homogenized problem; uncertainty; approximate estimate;
D O I
10.1007/s10559-020-00300-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The authors consider the problem of minimax estimation of a functional of the solution to the wave equation with rapidly oscillating coefficients. The observation (output signal) is nonlinear (has the operator of superposition type). For the small parameter epsilon > 0, the existence of the solution of the original problem is proved using the traditional minimax approach. Transition to a homogenized parameter problem allows us to remove the nonlinearity in the observation. The main result of the paper is that the minimax estimate of the problem with homogenized parameters is an approximate minimax estimate of the original problem.
引用
收藏
页码:793 / 801
页数:9
相关论文
共 50 条
  • [11] The approximate solutions of nonlinear Boussinesq equation
    Lu, Dianhen
    Shen, Jie
    Cheng, Yueling
    4TH INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2016 (SCIETECH 2016), 2016, 710
  • [12] Approximate Symmetry Reduction and Infinite Series Solutions to the Nonlinear Wave Equation with Damping
    Zhao Yuan
    Zhang Shun-Li
    Lou Sen-Yue
    CHINESE PHYSICS LETTERS, 2009, 26 (10)
  • [13] DETERMINING FUNCTIONALS FOR THE STRONGLY DAMPED NONLINEAR WAVE EQUATION
    Celebi, Okay
    Ugurlu, Davut
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2007, 5 (02) : 105 - 116
  • [14] APPROXIMATE SOLUTIONS OF A NONLINEAR DIFFERENTIAL-EQUATION
    BALACHANDRAN, K
    THANDAPANI, E
    BALASUBRAMANIAN, G
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 24 (03) : 399 - 402
  • [15] Approximate analytical solutions of a nonlinear diffusion equation
    R. Sh. Malkovich
    Technical Physics Letters, 2006, 32 : 884 - 885
  • [16] Approximate analytical solutions of a nonlinear diffusion equation
    Malkovich, R. Sh.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (10) : 884 - 885
  • [17] Approximate rogue wave solutions of the forced and damped nonlinear Schrodinger equation for water waves
    Onorato, Miguel
    Proment, Davide
    PHYSICS LETTERS A, 2012, 376 (45) : 3057 - 3059
  • [18] Invariant solutions of a nonlinear wave equation with a small dissipation obtained via approximate symmetries
    A. M. Grundland
    A. J. Hariton
    Ricerche di Matematica, 2020, 69 : 509 - 532
  • [19] Invariant solutions of a nonlinear wave equation with a small dissipation obtained via approximate symmetries
    Grundland, A. M.
    Hariton, A. J.
    RICERCHE DI MATEMATICA, 2020, 69 (02) : 509 - 532
  • [20] Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings
    Baleanu, Dumitru
    Jassim, Hassan Kamil
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 12