Explicit travelling wave solutions to a nonlinear equation

被引:0
|
作者
Zheng, Yun
Zhang, Hongqing
机构
来源
He Jishu/Nuclear Techniques | 2000年 / 23卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:389 / 391
相关论文
共 50 条
  • [1] Explicit travelling wave solutions to a nonlinear equation
    Zheng, Yun
    Zhang, Hong-Qing
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (03): : 389 - 391
  • [2] Explicit travelling wave solutions to a nonlinear equation
    Zheng, Y
    Zhang, HQ
    ACTA PHYSICA SINICA, 2000, 49 (03) : 389 - 391
  • [3] The smooth and nonsmooth travelling wave solutions in a nonlinear wave equation
    Li, SM
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (11) : 1333 - 1343
  • [4] The Smooth and Nonsmooth Travelling Wave Solutions in a Nonlinear Wave Equation
    Shu-min Li
    Applied Mathematics and Mechanics, 2001, 22 : 1333 - 1343
  • [5] Explicit solutions of nonlinear wave equation systems
    Bekir, Ahmet
    Ayhan, Burcu
    Ozer, M. Naci
    CHINESE PHYSICS B, 2013, 22 (01)
  • [6] Explicit solutions of nonlinear wave equation systems
    Ahmet Bekir
    Burcu Ayhan
    M. Naci zer
    ChinesePhysicsB, 2013, 22 (01) : 39 - 45
  • [7] Combinability of travelling wave solutions to nonlinear evolution equation
    Liu, SK
    Fu, ZT
    Liu, SD
    Wang, ZG
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (10): : 623 - 628
  • [8] New Exact and Explicit Travelling Wave Solutions for the Coupled Higgs Equation and a Nonlinear Variant of the PHI-four Equation
    Khajeh, A.
    Kabir, M. M.
    Koma, A. Yousefi
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (09) : 725 - 741
  • [9] Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation
    Li, Bacui
    Zhang, Yufeng
    CHAOS SOLITONS & FRACTALS, 2008, 38 (04) : 1202 - 1208
  • [10] Explicit and exact travelling wave solutions for the generalized derivative Schrodinger equation
    Huang, Ding-jiang
    Li, De-sheng
    Zhang, Hong-qing
    CHAOS SOLITONS & FRACTALS, 2007, 31 (03) : 586 - 593