When machine learning meets multiscale modeling in chemical reactions

被引:9
|
作者
Yang, Wuyue [2 ]
Peng, Liangrong [3 ]
Zhu, Yi [2 ]
Hong, Liu [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Minjiang Univ, Coll Math & Data Sci, Fuzhou 350108, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 09期
基金
美国国家科学基金会;
关键词
Bioinformatics - Learning algorithms - Machine learning;
D O I
10.1063/5.0015779
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the intrinsic complexity and nonlinearity of chemical reactions, direct applications of traditional machine learning algorithms may face many difficulties. In this study, through two concrete examples with biological background, we illustrate how the key ideas of multiscale modeling can help to greatly reduce the computational cost of machine learning, as well as how machine learning algorithms perform model reduction automatically in a time-scale separated system. Our study highlights the necessity and effectiveness of an integration of machine learning algorithms and multiscale modeling during the study of chemical reactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] When Machine Learning Meets Spectrum Sharing Security: Methodologies and Challenges
    Wang, Qun
    Sun, Haijian
    Hu, Rose Qingyang
    Bhuyan, Arupjyoti
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 176 - 208
  • [22] When Machine Learning Meets Privacy in 6G: A Survey
    Sun, Yuanyuan
    Liu, Jiajia
    Wang, Jiadai
    Cao, Yurui
    Kato, Nei
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (04): : 2694 - 2724
  • [23] The Customized PCB ColorChecker: When Color Restoration Meets Machine Learning
    Wang, Yingbo
    Qi, Min
    Xu, Yuelei
    2019 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER COMMUNICATIONS (ITCC 2019), 2019, : 74 - 79
  • [24] When Mini-AES Meets Machine Learning: Practice and Experience
    Liu, Xian
    2020 6TH IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (IEEE ISSE 2020), 2020,
  • [25] When Machine Learning Meets Media Cloud:Architecture, Application and Outlook
    JIN Yichao
    WEN Yonggang
    ZTECommunications, 2018, 16 (03) : 30 - 39
  • [26] WHEN MACHINE LEARNING MEETS BIG DATA A Wireless Communication Perspective
    Liu, Yuanwei
    Bi, Suzhi
    Shi, Zhiyuan
    Hanzo, Lajos
    IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2020, 15 (01): : 63 - 72
  • [27] When Machine Learning Meets Compressive Sampling for Wideband Spectrum Sensing
    Khalfi, Bassem
    Zaid, Adem
    Hamdaoui, Bechir
    2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 1120 - 1125
  • [28] Self-optimized network: When Machine Learning Meets Optimization
    Nacef, Abdelhakim
    Bagaa, Miloud
    Aklouf, Youcef
    Kaci, Abdellah
    Dutra, Diego Leonel Cadette
    Ksentini, Adlen
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [29] When Machine Learning Meets 2D Materials: A Review
    Lu, Bin
    Xia, Yuze
    Ren, Yuqian
    Xie, Miaomiao
    Zhou, Liguo
    Vinai, Giovanni
    Morton, Simon A.
    Wee, Andrew T. S.
    van der Wiel, Wilfred G.
    Zhang, Wen
    Wong, Ping Kwan Johnny
    ADVANCED SCIENCE, 2024, 11 (13)
  • [30] Machine learning activation energies of chemical reactions
    Lewis-Atwell, Toby
    Townsend, Piers A.
    Grayson, Matthew N.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (04)