When Machine Learning Meets 2D Materials: A Review

被引:38
|
作者
Lu, Bin [1 ,2 ]
Xia, Yuze [1 ,2 ]
Ren, Yuqian [1 ,2 ]
Xie, Miaomiao [1 ,2 ]
Zhou, Liguo [1 ,2 ]
Vinai, Giovanni [3 ]
Morton, Simon A. [4 ]
Wee, Andrew T. S. [5 ,6 ,7 ]
van der Wiel, Wilfred G. [8 ,9 ,10 ]
Zhang, Wen [1 ,2 ,8 ,9 ]
Wong, Ping Kwan Johnny [1 ,2 ,11 ]
机构
[1] Northwestern Polytech Univ, Sch Microelect, ARTIST Lab Artificial Elect Mat & Technol, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Yangtze River Delta Res Inst, Taicang 215400, Peoples R China
[3] Inst Officina Materiali IOM, Lab TASC, CNR, I-34149 Trieste, Italy
[4] Lawrence Berkeley Natl Lab, Adv Light Source ALS, Berkeley, CA 94720 USA
[5] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[6] Natl Univ Singapore, Ctr Adv Mat 2D CA2DM, Singapore 117542, Singapore
[7] Natl Univ Singapore, Graphene Res Ctr GRC, Singapore 117542, Singapore
[8] Univ Twente, MESA Inst Nanotechnol, Nanoelect Grp, NL-7500AE Enschede, Netherlands
[9] Univ Twente, BRAINS Ctr Brain Inspired Nano Syst, NL-7500AE Enschede, Netherlands
[10] Univ Munster, Inst Phys, D-48149 Munster, Germany
[11] NPU Chongqing Technol Innovat Ctr, Chongqing 400000, Peoples R China
关键词
2D materials; data-driven approach; machine learning; HIGH-THROUGHPUT CALCULATIONS; DER-WAALS HETEROSTRUCTURES; 2-DIMENSIONAL MATERIALS; HYDROGEN EVOLUTION; PREDICTION; DISCOVERY; IDENTIFICATION; APPROXIMATION; POTENTIALS; MECHANISMS;
D O I
10.1002/advs.202305277
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The availability of an ever-expanding portfolio of 2D materials with rich internal degrees of freedom (spin, excitonic, valley, sublattice, and layer pseudospin) together with the unique ability to tailor heterostructures made layer by layer in a precisely chosen stacking sequence and relative crystallographic alignments, offers an unprecedented platform for realizing materials by design. However, the breadth of multi-dimensional parameter space and massive data sets involved is emblematic of complex, resource-intensive experimentation, which not only challenges the current state of the art but also renders exhaustive sampling untenable. To this end, machine learning, a very powerful data-driven approach and subset of artificial intelligence, is a potential game-changer, enabling a cheaper - yet more efficient - alternative to traditional computational strategies. It is also a new paradigm for autonomous experimentation for accelerated discovery and machine-assisted design of functional 2D materials and heterostructures. Here, the study reviews the recent progress and challenges of such endeavors, and highlight various emerging opportunities in this frontier research area. The family of 2D materials is an unprecedented platform for materials by design, thanks to their ever-expanding material portfolio with rich internal degrees of freedom. The study provides a comprehensive overview of the recent progress, challenges and emerging opportunities in a frontier research area that exploits machine learning-a very powerful data-driven approach and subset of artificial intelligence-for 2D materials.image
引用
收藏
页数:40
相关论文
共 50 条
  • [1] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    D. Yu. Kirsanova
    M. A. Soldatov
    Z. M. Gadzhimagomedova
    D. M. Pashkov
    A. V. Chernov
    M. A. Butakova
    A. V. Soldatov
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 485 - 494
  • [2] Exploring and machine learning structural instabilities in 2D materials
    Simone Manti
    Mark Kamper Svendsen
    Nikolaj R. Knøsgaard
    Peder M. Lyngby
    Kristian S. Thygesen
    npj Computational Materials, 9
  • [3] Exploring and machine learning structural instabilities in 2D materials
    Manti, Simone
    Svendsen, Mark Kamper
    Knosgaard, Nikolaj R. R.
    Lyngby, Peder M. M.
    Thygesen, Kristian S. S.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [4] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    Kirsanova, D. Yu.
    Soldatov, M. A.
    Gadzhimagomedova, Z. M.
    Pashkov, D. M.
    Chernov, A. V.
    Butakova, M. A.
    Soldatov, A. V.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (03): : 485 - 494
  • [5] Machine Learning Study of the Magnetic Ordering in 2D Materials
    Acosta, Carlos Mera
    Ogoshi, Elton
    Souza, Jose Antonio
    Dalpian, Gustavo M.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9418 - 9432
  • [6] Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies
    Bhowmik, Sayan
    Rajan, Ananth Govind
    ISCIENCE, 2022, 25 (03)
  • [7] Sparse representation for machine learning the properties of defects in 2D materials
    Nikita Kazeev
    Abdalaziz Rashid Al-Maeeni
    Ignat Romanov
    Maxim Faleev
    Ruslan Lukin
    Alexander Tormasov
    A. H. Castro Neto
    Kostya S. Novoselov
    Pengru Huang
    Andrey Ustyuzhanin
    npj Computational Materials, 9
  • [8] MACHINE LEARNING ACCELERATED ATOMISTIC SIMULATIONS FOR 2D MATERIALS WITH DEFECTS
    Sun, Shijie
    Singh, Akash
    Li, Yumeng
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 4, 2023,
  • [9] Sparse representation for machine learning the properties of defects in 2D materials
    Kazeev, Nikita
    Al-Maeeni, Abdalaziz Rashid
    Romanov, Ignat
    Faleev, Maxim
    Lukin, Ruslan
    Tormasov, Alexander
    Neto, A. H. Castro
    Novoselov, Kostya S.
    Huang, Pengru
    Ustyuzhanin, Andrey
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [10] Understanding, discovery, and synthesis of 2D materials enabled by machine learning
    Ryu, Byunghoon
    Wang, Luqing
    Pu, Haihui
    Chan, Maria K. Y.
    Chen, Junhong
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (06) : 1899 - 1925