When machine learning meets multiscale modeling in chemical reactions

被引:9
|
作者
Yang, Wuyue [2 ]
Peng, Liangrong [3 ]
Zhu, Yi [2 ]
Hong, Liu [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Minjiang Univ, Coll Math & Data Sci, Fuzhou 350108, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 09期
基金
美国国家科学基金会;
关键词
Bioinformatics - Learning algorithms - Machine learning;
D O I
10.1063/5.0015779
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the intrinsic complexity and nonlinearity of chemical reactions, direct applications of traditional machine learning algorithms may face many difficulties. In this study, through two concrete examples with biological background, we illustrate how the key ideas of multiscale modeling can help to greatly reduce the computational cost of machine learning, as well as how machine learning algorithms perform model reduction automatically in a time-scale separated system. Our study highlights the necessity and effectiveness of an integration of machine learning algorithms and multiscale modeling during the study of chemical reactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Machine Learning Meets Cancer
    Varlamova, Elena V.
    Butakova, Maria A.
    Semyonova, Vlada V.
    Soldatov, Sergey A.
    Poltavskiy, Artem V.
    Kit, Oleg I.
    Soldatov, Alexander V.
    CANCERS, 2024, 16 (06)
  • [42] Microbiology Meets Machine Learning
    Williams, Ruth
    SCIENTIST, 2019, 33 (05): : 22 - 22
  • [43] Machine Learning Meets Databases
    Stephan Günnemann
    Datenbank-Spektrum, 2017, 17 (1) : 77 - 83
  • [44] Machine learning in multiscale modeling of spatially tailored materials with microstructure uncertainties
    Xiao, Shaoping
    Deierling, Phillip
    Attarian, Siamak
    El Tuhami, Ahmed
    COMPUTERS & STRUCTURES, 2021, 249
  • [45] Advancing Multiscale Molecular Modeling with Machine Learning-Derived Electrostatics
    Semelak, Jonathan A.
    Pickering, Ignacio
    Huddleston, Kate
    Olmos, Justo
    Grassano, Juan Santiago
    Clemente, Camila Mara
    Drusin, Salvador I.
    Marti, Marcelo
    Lebrero, Mariano Camilo Gonzalez
    Roitberg, Adrian E.
    Estrin, Dario A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025,
  • [46] PHYSICS GUIDED MACHINE LEARNING FOR VARIATIONAL MULTISCALE REDUCED ORDER MODELING
    Ahmed, Shady E.
    San, Omer
    Rasheed, Adil
    Iliescu, Traian
    Veneziani, Alessandro
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : B283 - B313
  • [47] Machine learning made easy for optimizing chemical reactions
    Jason E. Hein
    Nature, 2021, 590 : 40 - 41
  • [48] Machine learning made easy for optimizing chemical reactions
    Hein, Jason E.
    NATURE, 2021, 590 (7844) : 40 - 41
  • [49] When Learning as Movement meets Learning on the Move
    Gutierrez, Kris D.
    COGNITION AND INSTRUCTION, 2020, 38 (03) : 427 - 433
  • [50] When Transfer Learning Meets Deep Learning
    Yang, Qiang
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 5 - 5