Steady state thermal analysis of a reconfigurable wafer-scale circuit board

被引:0
|
作者
Bougataya, Mohammed [1 ,2 ]
Lakhsasi, Ahmed [2 ]
Norman, Richard
Prytula, Richard [3 ]
Blaquiere, Yves [4 ,5 ]
Savaria, Yvon
机构
[1] Univ Quebec Trois Rivieres, Trois Rivieres, PQ GA9 5H7, Canada
[2] Univ Quebec, Outaouais, PQ, Canada
[3] Gesti TechnoCap Inc, Montreal, PQ, Canada
[4] Univ Quebec, Montreal, PQ, Canada
[5] Ecole Polytech Montreal, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
thermal analysis; heat transfer; junction temperature; VLSI; finite element;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
During the development of a reconfigurable wafer-scale circuit board, the thermal design aspects have proved crucial to its reliable operation. Reducing thermally induced stress and preventing local overheating remain major concerns when optimizing the capabilities of the WaferBoard (TM) technology. This paper presents a thermal analysis of that technology. For this study, various thermal boundary conditions are analyzed and thermal profiles with 3D thermal contours are presented. 3D finite element thermal models are used to predict local thermal peaks on the WaferBoard (TM) structure. This model allows exploring the possibilities to minimize the thermal gradient in the critical areas, especially at the solder balls level. In a second step, thermal stress analysis will be conducted using the temperature loads calculated by steady state thermal analysis.
引用
收藏
页码:394 / +
页数:2
相关论文
共 50 条
  • [31] Solder joint crack propagation analysis of wafer-level chip scale package on printed circuit board assemblies
    Lau, J
    Chang, C
    Lee, SWR
    50TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE - 2000 PROCEEDINGS, 2000, : 1360 - 1368
  • [32] Engineering Top Gate Stack for Wafer-Scale Integrated Circuit Fabrication Based on Two-Dimensional Semiconductors
    Ma, Jingyi
    Chen, Xinyu
    Wang, Xinyu
    Bian, Jihong
    Tong, Ling
    Chen, Honglei
    Guo, Xiaojiao
    Xia, Yin
    Zhang, Xinzhi
    Xu, Zihan
    He, Congrong
    Qu, Jialing
    Zhou, Peng
    Wu, Chenjian
    Wu, Xing
    Bao, Wenzhong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) : 11610 - 11618
  • [33] A STUDY OF NETWORK LOGIC FOR WAFER-SCALE PARALLEL-ACCESS MEMORY AND A YIELD ANALYSIS
    YAMASHITA, K
    IKEHARA, S
    SYSTEMS AND COMPUTERS IN JAPAN, 1995, 26 (02) : 1 - 9
  • [34] Wafer-scale nanocracks enable single-molecule detection and on-site analysis
    Chang, Yu-Ling
    Lai, I-Chun
    Lu, Li-Chia
    Chang, Sih-Wei
    Sun, Aileen Y.
    Wan, Dehui
    Chen, Hsuen-Li
    BIOSENSORS & BIOELECTRONICS, 2022, 200
  • [35] Monitoring Thermal Stress in Wafer-Scale Integrated Circuits by the Attentive Vision Method Using an Infrared Camera
    Lakhssassi, Ahmed
    Palenychka, Roman
    Savaria, Yvon
    Sayde, Michel
    Zaremba, Marek
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (02) : 412 - 424
  • [36] Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability
    Wei, Nan
    Gao, Ningfei
    Xu, Haitao
    Liu, Zhen
    Gao, Lei
    Jiang, Haoxin
    Tian, Yu
    Chen, Yufeng
    Du, Xiaodong
    Lian-Mao Peng
    NANO RESEARCH, 2022, 15 (11) : 9875 - 9880
  • [37] Near-infrared tailored thermal emission from wafer-scale continuous-film resonators
    Roberts, Alexander S.
    Chirumamilla, Manohar
    Thilsing-Hansen, Kasper
    Pedersen, Kjeld
    Bozhevolnyi, Sergey I.
    OPTICS EXPRESS, 2015, 23 (19): : A1111 - A1119
  • [38] All-Solid-State Ion Synaptic Transistor for Wafer-Scale Integration with Electrolyte of a Nanoscale Thickness
    Yu, Ji-Man
    Lee, Chungryeol
    Kim, Da-Jin
    Park, Hongkeun
    Han, Joon-Kyu
    Hur, Jae
    Kim, Jin-Ki
    Kim, Myung-Su
    Seo, Myungsoo
    Im, Sung Gap
    Choi, Yang-Kyu
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (23)
  • [39] Growth, characterization, and uniformity analysis of 200 mm wafer-scale SrTiO3/Si
    Gu, X.
    Lubyshev, D.
    Batzel, J.
    Fastenau, J. M.
    Liu, W. K.
    Pelzel, R.
    Magana, J. F.
    Ma, Q.
    Rao, V. R.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03):
  • [40] EQUIVALENT CIRCUIT FOR IMPULSE LOADS AND ANALYSIS OF STEADY STATE IN CHARGING SOURCE CIRCUIT
    KUZNETSO.MV
    ELECTRICAL TECHNOLOGY, 1970, 4 : 153 - &