BTI reliability of 45 nm high-k plus metal-gate process technology

被引:95
|
作者
Pae, S. [1 ]
Agostinelli, M. [1 ]
Brazie, M. [2 ]
Chau, R.
Dewey, G.
Ghani, T. [2 ]
Hattendorf, M. [2 ]
Hicks, J. [1 ]
Kavalieros, J.
Kuhn, K.
Kuhn, M. [1 ,2 ]
Maiz, J. [1 ]
Metz, M.
Mistry, K. [2 ]
Prasad, C. [1 ]
Ramey, S. [1 ]
Roskowski, A. [2 ]
Sandford, J. [2 ]
Thomas, C. [2 ]
Thomas, J. [1 ]
Wiegand, C. [2 ]
Wiedemer, J. [2 ]
机构
[1] Intel Corp, 5200 NE Elam Young Pkwy, Hillsboro, OR 97124 USA
[2] PTD, Hillsboro, OR 97124 USA
关键词
BTI; high-K; metal gate; transistors; reliability;
D O I
10.1109/RELPHY.2008.4558911
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, Bias-temperature instability (BTI) characterization on 45nm high-K + metal-gate (HK+MG) transistors is presented and degradation mechanism is discussed. Transistors with an unoptimized HK film stack in the early development phase exhibited pre-existing traps and large amount of hysteresis that was consistent with literature. The optimized and final HK process demonstrated NMOS and PMOS BTI on HK+MG transistors that are better than that of SiON at matched E-fields and comparable at targeted 30% higher use fields. The final process also showed no hysteresis due to fast traps thereby allowing us to characterize its intrinsic degradation mechanism. On the optimized process, NMOS BTI is attributed primarily to electron trapping in the HK bulk and HK/SiON interfacial layer (IL) regions. PMOS BTI degradation, on the other hand, is mainly interface driven and is found to be very similar to that observed on conventional SiON transistors.
引用
收藏
页码:352 / +
页数:3
相关论文
共 50 条
  • [31] Investigation on Oxygen Diffusion in a High-k Metal-Gate Stack for Advanced CMOS Technology by XPS
    Kechichian, A.
    Barboux, P.
    Gros-Jean, M.
    SEMICONDUCTORS, DIELECTRICS, AND METALS FOR NANOELECTRONICS 11, 2013, 58 (07): : 325 - 338
  • [32] From strain to high-k/metal gate - the 65-45 nm transition
    James, Dick
    2008 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE, 2008, : 76 - 81
  • [33] Defect Reduction for 20nm High-k Metal Gate Technology
    Charbois, Vincent
    Lebreton, Julie
    Savoye, Mylene
    Labonne, Eric
    Labourier, Antoine
    Dumont, Benjamin
    Lenox, Chet
    von Den Hoff, Mike
    2015 26TH ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), 2015, : 14 - 18
  • [34] Single metal gate on high-k gate stacks for 45nm low power CMOS
    Taylor, W. J., Jr.
    Capasso, C.
    Min, B.
    Winstead, B.
    Verret, E.
    Loiko, K.
    Gilmer, D.
    Hegde, R. I.
    Schaeffer, J.
    Luckowski, E.
    Martinez, A.
    Raymond, M.
    Happ, C.
    Triyoso, D. H.
    Kalpat, S.
    Haggag, A.
    Roan, D.
    Nguyen, J. -Y.
    La, L. B.
    Hebert, L.
    Smith, J.
    Jovanovic, D.
    Burnett, D.
    Foisy, M.
    Cave, N.
    Tobin, P. J.
    Samavedam, S. B.
    White, B. E., Jr.
    Venkatesan, S.
    2006 INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2006, : 366 - +
  • [35] Implementation of high-k and metal gate materials for the 45 nm node and beyond:: gate patterning development
    Beckx, S
    Demand, M
    Locorotondo, S
    Henson, K
    Claes, M
    Paraschiv, V
    Shamiryan, D
    Jaenen, P
    Boullart, W
    Degendt, S
    Biesemans, S
    Vanhaelemeersch, S
    Vertommen, J
    Coenegrachts, B
    MICROELECTRONICS RELIABILITY, 2005, 45 (5-6) : 1007 - 1011
  • [36] The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices
    Hsieh, E. R.
    Lu, P. Y.
    Chung, Steve S.
    Chang, K. Y.
    Liu, C. H.
    Ke, J. C.
    Yang, C. W.
    Tsai, C. T.
    2014 SYMPOSIUM ON VLSI TECHNOLOGY (VLSI-TECHNOLOGY): DIGEST OF TECHNICAL PAPERS, 2014,
  • [37] Study on the ESD-Induced Gate-Oxide Breakdown and the Protection Solution in 28nm High-K Metal-Gate CMOS Technology
    Lin, Chun-Yu
    Ker, Ming-Dou
    Chang, Pin-Hsin
    Wang, Wen-Tai
    2015 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2015,
  • [38] A 4.0 GHz 291 Mb Voltage-Scalable SRAM Design in a 32 nm High-k plus Metal-Gate CMOS Technology With Integrated Power Management
    Wang, Yih
    Bhattacharya, Uddalak
    Hamzaoglu, Fatih
    Kolar, Pramod
    Ng, Yong-Gee
    Wei, Liqiong
    Zhang, Ying
    Zhang, Kevin
    Bohr, Mark
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (01) : 103 - 110
  • [39] Embedded Resistive Switching Non-volatile Memory Technology for 28nm and Beyond High-k Metal-gate Generations
    Chung, Steve S.
    2019 IEEE 11TH INTERNATIONAL MEMORY WORKSHOP (IMW 2019), 2019, : 83 - 86
  • [40] Novel STI Technology for Enhancing Reliability of High-k/Metal Gate DRAM
    Park, Hyojin
    Kil, Gyuhyun
    Sung, Wonju
    Han, Junghoon
    Song, Jungwoo
    Choi, Byoungdeog
    IEEE ACCESS, 2024, 12 : 139427 - 139434