A blueprint for demonstrating quantum supremacy with superconducting qubits

被引:325
|
作者
Neill, C. [1 ]
Roushan, P. [2 ]
Kechedzhi, K. [3 ,4 ]
Boixo, S. [2 ]
Isakov, S. V. [2 ]
Smelyanskiy, V. [2 ]
Megrant, A. [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Arya, K. [2 ]
Barends, R. [2 ]
Burkett, B. [2 ]
Chen, Y. [2 ]
Chen, Z. [1 ]
Fowler, A. [2 ]
Foxen, B. [1 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Jeffrey, E. [2 ]
Huang, T. [2 ]
Kelly, J. [2 ]
Klimov, P. [2 ]
Lucero, E. [2 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Quintana, C. [1 ]
Sank, D. [2 ]
Vainsencher, A. [2 ]
Wenner, J. [1 ]
White, T. C. [2 ]
Neven, H. [2 ]
Martinis, J. M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google, Santa Barbara, CA 93117 USA
[3] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[4] Univ Space Res Assoc, Mountain View, CA 94043 USA
关键词
SYSTEMS;
D O I
10.1126/science.aao4309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
  • [41] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Liu, Tong
    Guo, Bao-Qing
    Zhou, Yan-Hui
    Zhao, Jun-Long
    Fang, Yu-Liang
    Wu, Qi-Cheng
    Yang, Chui-Ping
    FRONTIERS OF PHYSICS, 2022, 17 (06)
  • [42] Progress, status, and prospects of superconducting qubits for quantum computing
    Steffen, Matthias
    Gambetta, Jay M.
    Chow, Jerry M.
    2016 46TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2016, : 17 - 20
  • [43] Building logical qubits in a superconducting quantum computing system
    Jay M. Gambetta
    Jerry M. Chow
    Matthias Steffen
    npj Quantum Information, 3
  • [44] Quantum switch for coupling highly detuned superconducting qubits
    Xie, Ji-kun
    Ma, Sheng-li
    Yang, Zhi-peng
    Li, Zhen
    Li, Fu-li
    PHYSICS LETTERS A, 2018, 382 (37) : 2626 - 2631
  • [45] Generating quantum entanglement in scalable superconducting charge qubits
    Huo, Wen Yi
    Long, Gui Lu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (06) : 829 - 836
  • [46] Quantum State Transfer with Tunable Couplings for Superconducting Qubits
    Long-Bao Yu
    Jun Liu
    Ping Dong
    Zhuo-Liang Cao
    International Journal of Theoretical Physics, 2013, 52 : 404 - 410
  • [47] Experimental quantum adversarial learning with programmable superconducting qubits
    Ren, Wenhui
    Li, Weikang
    Xu, Shibo
    Wang, Ke
    Jiang, Wenjie
    Jin, Feitong
    Zhu, Xuhao
    Chen, Jiachen
    Song, Zixuan
    Zhang, Pengfei
    Dong, Hang
    Zhang, Xu
    Deng, Jinfeng
    Gao, Yu
    Zhang, Chuanyu
    Wu, Yaozu
    Zhang, Bing
    Guo, Qiujiang
    Li, Hekang
    Wang, Zhen
    Biamonte, Jacob
    Song, Chao
    Deng, Dong-Ling
    Wang, H.
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (11): : 711 - 717
  • [48] Entangled macroscopic quantum states in two superconducting qubits
    Berkley, AJ
    Xu, H
    Ramos, RC
    Gubrud, MA
    Strauch, FW
    Johnson, PR
    Anderson, JR
    Dragt, AJ
    Lobb, CJ
    Wellstood, FC
    SCIENCE, 2003, 300 (5625) : 1548 - 1550
  • [49] Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
    Gramajo, Ana Laura
    Campbell, Dan
    Kannan, Bharath
    Kim, David K.
    Melville, Alexander
    Niedzielski, Bethany M.
    Yoder, Jonilyn L.
    Sanchez, Maria Jose
    Dominguez, Daniel
    Gustavsson, Simon
    Oliver, William D.
    PHYSICAL REVIEW APPLIED, 2020, 14 (01)
  • [50] Entanglement in IBMQ superconducting quantum computer with 53 qubits
    Fei, Shao-Ming
    Quantum Engineering, 2020, 2 (03)