A blueprint for demonstrating quantum supremacy with superconducting qubits

被引:325
|
作者
Neill, C. [1 ]
Roushan, P. [2 ]
Kechedzhi, K. [3 ,4 ]
Boixo, S. [2 ]
Isakov, S. V. [2 ]
Smelyanskiy, V. [2 ]
Megrant, A. [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Arya, K. [2 ]
Barends, R. [2 ]
Burkett, B. [2 ]
Chen, Y. [2 ]
Chen, Z. [1 ]
Fowler, A. [2 ]
Foxen, B. [1 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Jeffrey, E. [2 ]
Huang, T. [2 ]
Kelly, J. [2 ]
Klimov, P. [2 ]
Lucero, E. [2 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Quintana, C. [1 ]
Sank, D. [2 ]
Vainsencher, A. [2 ]
Wenner, J. [1 ]
White, T. C. [2 ]
Neven, H. [2 ]
Martinis, J. M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google, Santa Barbara, CA 93117 USA
[3] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[4] Univ Space Res Assoc, Mountain View, CA 94043 USA
关键词
SYSTEMS;
D O I
10.1126/science.aao4309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
  • [31] Implementation of a quantum metamaterial using superconducting qubits
    Macha, Pascal
    Oelsner, Gregor
    Reiner, Jan-Michael
    Marthaler, Michael
    Andre, Stephan
    Schoen, Gerd
    Huebner, Uwe
    Meyer, Hans-Georg
    Il'ichev, Evgeni
    Ustinov, Alexey V.
    NATURE COMMUNICATIONS, 2014, 5
  • [32] An Introduction to Superconducting Qubits and Circuit Quantum Electrodynamics
    Materise, Nicholas
    MICROWAVE CAVITIES AND DETECTORS FOR AXION RESEARCH, 2018, 211 : 87 - 95
  • [33] Special issue on quantum computing with superconducting qubits
    Korotkov, Alexander N.
    QUANTUM INFORMATION PROCESSING, 2009, 8 (2-3) : 51 - 54
  • [34] Quantum Entanglement and Correlations in Superconducting Flux Qubits
    Marcela Herrera
    John H. Reina
    Journal of Superconductivity and Novel Magnetism, 2012, 25 : 2149 - 2156
  • [35] Implementation of a quantum metamaterial using superconducting qubits
    Pascal Macha
    Gregor Oelsner
    Jan-Michael Reiner
    Michael Marthaler
    Stephan André
    Gerd Schön
    Uwe Hübner
    Hans-Georg Meyer
    Evgeni Il’ichev
    Alexey V. Ustinov
    Nature Communications, 5
  • [36] A quantum engineer's guide to superconducting qubits
    Krantz, P.
    Kjaergaard, M.
    Yan, F.
    Orlando, T. P.
    Gustavsson, S.
    Oliver, W. D.
    APPLIED PHYSICS REVIEWS, 2019, 6 (02):
  • [37] Quantum coherent tunable coupling of superconducting qubits
    Niskanen, A. O.
    Harrabi, K.
    Yoshihara, F.
    Nakamura, Y.
    Lloyd, S.
    Tsai, J. S.
    SCIENCE, 2007, 316 (5825) : 723 - 726
  • [38] Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits
    Corcoles, A. D.
    Takita, Maika
    Inoue, Ken
    Lekuch, Scott
    Minev, Zlatko K.
    Chow, Jerry M.
    Gambetta, Jay M.
    PHYSICAL REVIEW LETTERS, 2021, 127 (10)
  • [39] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Tong Liu
    Bao-Qing Guo
    Yan-Hui Zhou
    Jun-Long Zhao
    Yu-Liang Fang
    Qi-Cheng Wu
    Chui-Ping Yang
    Frontiers of Physics, 2022, 17
  • [40] Transfer of quantum entangled states between superconducting qubits and microwave field qubits
    Liu Tong
    Guo BaoQing
    Zhou YanHui
    Zhao JunLong
    Fang YuLiang
    Wu QiCheng
    Yang ChuiPing
    Frontiers of Physics, 2022, 17 (06)