A blueprint for demonstrating quantum supremacy with superconducting qubits

被引:325
|
作者
Neill, C. [1 ]
Roushan, P. [2 ]
Kechedzhi, K. [3 ,4 ]
Boixo, S. [2 ]
Isakov, S. V. [2 ]
Smelyanskiy, V. [2 ]
Megrant, A. [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Arya, K. [2 ]
Barends, R. [2 ]
Burkett, B. [2 ]
Chen, Y. [2 ]
Chen, Z. [1 ]
Fowler, A. [2 ]
Foxen, B. [1 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Jeffrey, E. [2 ]
Huang, T. [2 ]
Kelly, J. [2 ]
Klimov, P. [2 ]
Lucero, E. [2 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Quintana, C. [1 ]
Sank, D. [2 ]
Vainsencher, A. [2 ]
Wenner, J. [1 ]
White, T. C. [2 ]
Neven, H. [2 ]
Martinis, J. M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google, Santa Barbara, CA 93117 USA
[3] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[4] Univ Space Res Assoc, Mountain View, CA 94043 USA
关键词
SYSTEMS;
D O I
10.1126/science.aao4309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
  • [21] Superconducting qubits as potential devices for quantum simulation
    Ashhab, Sahel
    Wang, Hefeng
    Nori, Franco
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [22] Adiabatic quantum simulations with driven superconducting qubits
    Roth, Marco
    Moll, Nikolaj
    Salis, Gian
    Ganzhorn, Marc
    Egger, Daniel J.
    Filipp, Stefan
    Schmidt, Sebastian
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [23] Special issue on quantum computing with superconducting qubits
    Alexander N. Korotkov
    Quantum Information Processing, 2009, 8 : 51 - 54
  • [24] Multilevel quantum description of decoherence in superconducting qubits
    Burkard, G
    Koch, RH
    DiVincenzo, DP
    PHYSICAL REVIEW B, 2004, 69 (06):
  • [25] Coherent router for quantum networks with superconducting qubits
    Christensen, K. S.
    Rasmussen, S. E.
    Petrosyan, D.
    Zinner, N. T.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [26] Accelerated Quantum Adiabatic Transfer in Superconducting Qubits
    Zheng, Wen
    Xu, Jianwen
    Wang, Zhimin
    Dong, Yuqian
    Lan, Dong
    Tan, Xinsheng
    Yu, Yang
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [27] Materials physics and quantum coherence in superconducting qubits
    Beasley, MR
    JOURNAL OF SUPERCONDUCTIVITY, 2004, 17 (05): : 663 - 667
  • [28] Quantum Entanglement and Correlations in Superconducting Flux Qubits
    Herrera, Marcela
    Reina, John H.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2012, 25 (07) : 2149 - 2156
  • [29] Materials Physics and Quantum Coherence in Superconducting Qubits
    M. R. Beasley
    Journal of Superconductivity, 2004, 17 : 663 - 667
  • [30] Quantum storage and information transfer with superconducting qubits
    Wang, YD
    Wang, ZD
    Sun, CP
    PHYSICAL REVIEW B, 2005, 72 (17)