A blueprint for demonstrating quantum supremacy with superconducting qubits

被引:325
|
作者
Neill, C. [1 ]
Roushan, P. [2 ]
Kechedzhi, K. [3 ,4 ]
Boixo, S. [2 ]
Isakov, S. V. [2 ]
Smelyanskiy, V. [2 ]
Megrant, A. [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Arya, K. [2 ]
Barends, R. [2 ]
Burkett, B. [2 ]
Chen, Y. [2 ]
Chen, Z. [1 ]
Fowler, A. [2 ]
Foxen, B. [1 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Jeffrey, E. [2 ]
Huang, T. [2 ]
Kelly, J. [2 ]
Klimov, P. [2 ]
Lucero, E. [2 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Quintana, C. [1 ]
Sank, D. [2 ]
Vainsencher, A. [2 ]
Wenner, J. [1 ]
White, T. C. [2 ]
Neven, H. [2 ]
Martinis, J. M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google, Santa Barbara, CA 93117 USA
[3] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[4] Univ Space Res Assoc, Mountain View, CA 94043 USA
关键词
SYSTEMS;
D O I
10.1126/science.aao4309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
  • [1] Quantum memory for superconducting qubits
    Pritchett, EJ
    Geller, MR
    PHYSICAL REVIEW A, 2005, 72 (01)
  • [2] Quantum trajectories of superconducting qubits
    Weber, Steven J.
    Murch, Kater W.
    Kimchi-Schwartz, Mollie E.
    Roch, Nicolas
    Siddiqi, Irfan
    COMPTES RENDUS PHYSIQUE, 2016, 17 (07) : 766 - 777
  • [3] Quantum acoustics with superconducting qubits
    Chu, Yiwen
    Kharel, Prashanta
    Renninger, William H.
    Burkhart, Luke D.
    Frunzio, Luigi
    Rakich, Peter T.
    Schoelkopf, Robert J.
    SCIENCE, 2017, 358 (6360) : 199 - 202
  • [4] Blueprint for All-to-All-Connected Superconducting Spin Qubits
    Pita-Vidal, Marta
    Wesdorp, Jaap J.
    Andersen, Christian Kraglund
    PRX QUANTUM, 2025, 6 (01):
  • [5] How many qubits are needed for quantum computational supremacy?
    Dalzell, Alexander M.
    Harrow, Aram W.
    Koh, Dax Enshan
    La Placa, Rolando L.
    QUANTUM, 2020, 4
  • [6] Quantum computing with many superconducting qubits
    You, JQ
    Tsai, JS
    Nori, F
    NEW DIRECTIONS IN MESOSCOPIC PHYSICS (TOWARDS NANOSCIENCE), 2003, 125 : 351 - 360
  • [7] Hamiltonian quantum computing with superconducting qubits
    Ciani, A.
    Terhal, B. M.
    DiVincenzo, D. P.
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03)
  • [8] The future of quantum computing with superconducting qubits
    Bravyi, Sergey
    Dial, Oliver
    Gambetta, Jay M.
    Gil, Dario
    Nazario, Zaira
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (16)
  • [9] Quantum control of superconducting phase qubits
    Johnson, PR
    Strauch, FW
    Dragt, AJ
    Anderson, JR
    Lobb, CJ
    Wellstood, FC
    QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 : 232 - 241
  • [10] Floquet Quantum Simulation with Superconducting Qubits
    Kyriienko, Oleksandr
    Sorensen, Anders S.
    PHYSICAL REVIEW APPLIED, 2018, 9 (06):