Equivalences between three presentations of orthogonal and symplectic Yangians

被引:22
|
作者
Guay, Nicolas [1 ]
Regelskis, Vidas [2 ]
Wendlandt, Curtis [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, CAB 632, Edmonton, AB T6G 2G1, Canada
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Lie algebras; Yangians; Presentations; R-matrix; Representations; AFFINE QUANTUM ALGEBRAS; TENSOR-PRODUCTS; R-MATRIX; DRINFELD REALIZATION; TWISTED YANGIANS; TYPES B; REPRESENTATIONS; IRREDUCIBILITY; MODULES;
D O I
10.1007/s11005-018-1108-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the equivalence of two presentations of the Yangian Y(g) of a simple Lie algebra g, and we also show the equivalence with a third presentation when g is either an orthogonal or a symplectic Lie algebra. As an application, we obtain an explicit correspondence between two versions of the classification theorem of finite-dimensional irreducible modules for orthogonal and symplectic Yangians.
引用
收藏
页码:327 / 379
页数:53
相关论文
共 50 条
  • [31] Transport studies in three-terminal microwave graphs with orthogonal, unitary, and symplectic symmetry
    Martinez-Arguello, A. M.
    Rehemanjiang, A.
    Martinez-Mares, M.
    Mendez-Bermudez, J. A.
    Stoeckmann, H-J
    Kuhl, U.
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [32] Yangians and Yang-Baxter R-operators for ortho-symplectic superalgebras
    Fuksa, J.
    Isaev, A. P.
    Karakhanyan, D.
    Kirschner, R.
    NUCLEAR PHYSICS B, 2017, 917 : 44 - 85
  • [33] CASIMIR OPERATORS FOR ORTHOGONAL AND SYMPLECTIC GROUPS
    PERELOMOV, AM
    POPOV, VS
    JETP LETTERS-USSR, 1965, 2 (01): : 20 - +
  • [34] Invariant fields of symplectic and orthogonal groups
    Saltman, DJ
    JOURNAL OF ALGEBRA, 2002, 258 (02) : 507 - 534
  • [35] The symplectic-orthogonal Penner models
    Dalabeeh, Mohammad
    Chair, Noureddine
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (46)
  • [36] The Orthogonal Branching Problem for Symplectic Monogenics
    David Eelbode
    Guner Muarem
    Advances in Applied Clifford Algebras, 2022, 32
  • [37] Block Algorithms for Orthogonal Symplectic Factorizations
    D. Kressner
    BIT Numerical Mathematics, 2003, 43 : 775 - 790
  • [38] The Orthogonal Branching Problem for Symplectic Monogenics
    Eelbode, David
    Muarem, Guner
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (03)
  • [39] Skew Symplectic and Orthogonal Schur Functions
    Jing, Naihuan
    Li, Zhijun
    Wang, Danxia
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [40] CASIMIR OPERATORS FOR ORTHOGONAL AND SYMPLECTIC GROUPS
    PERELOMOV, AM
    POPOV, VS
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1966, 3 (06): : 819 - +