Equivalences between three presentations of orthogonal and symplectic Yangians

被引:22
|
作者
Guay, Nicolas [1 ]
Regelskis, Vidas [2 ]
Wendlandt, Curtis [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, CAB 632, Edmonton, AB T6G 2G1, Canada
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Lie algebras; Yangians; Presentations; R-matrix; Representations; AFFINE QUANTUM ALGEBRAS; TENSOR-PRODUCTS; R-MATRIX; DRINFELD REALIZATION; TWISTED YANGIANS; TYPES B; REPRESENTATIONS; IRREDUCIBILITY; MODULES;
D O I
10.1007/s11005-018-1108-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the equivalence of two presentations of the Yangian Y(g) of a simple Lie algebra g, and we also show the equivalence with a third presentation when g is either an orthogonal or a symplectic Lie algebra. As an application, we obtain an explicit correspondence between two versions of the classification theorem of finite-dimensional irreducible modules for orthogonal and symplectic Yangians.
引用
收藏
页码:327 / 379
页数:53
相关论文
共 50 条