Equivalences between three presentations of orthogonal and symplectic Yangians

被引:22
|
作者
Guay, Nicolas [1 ]
Regelskis, Vidas [2 ]
Wendlandt, Curtis [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, CAB 632, Edmonton, AB T6G 2G1, Canada
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Lie algebras; Yangians; Presentations; R-matrix; Representations; AFFINE QUANTUM ALGEBRAS; TENSOR-PRODUCTS; R-MATRIX; DRINFELD REALIZATION; TWISTED YANGIANS; TYPES B; REPRESENTATIONS; IRREDUCIBILITY; MODULES;
D O I
10.1007/s11005-018-1108-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the equivalence of two presentations of the Yangian Y(g) of a simple Lie algebra g, and we also show the equivalence with a third presentation when g is either an orthogonal or a symplectic Lie algebra. As an application, we obtain an explicit correspondence between two versions of the classification theorem of finite-dimensional irreducible modules for orthogonal and symplectic Yangians.
引用
收藏
页码:327 / 379
页数:53
相关论文
共 50 条
  • [21] Gauge equivalences for foliations and pre-symplectic structures
    Schaetz, Florian
    Zambon, Marco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (07)
  • [22] HOMOLOGY OF SYMPLECTIC AND ORTHOGONAL ALGEBRAS
    LODAY, JL
    PROCESI, C
    ADVANCES IN MATHEMATICS, 1988, 69 (01) : 93 - 108
  • [24] PRESENTATION OF THE SYMPLECTIC AND ORTHOGONAL GROUPS
    FINKELSTEIN, L
    SOLOMON, R
    JOURNAL OF ALGEBRA, 1979, 60 (02) : 423 - 438
  • [25] On orthogonal and symplectic matrix ensembles
    Tracy, CA
    Widom, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) : 727 - 754
  • [26] On Orthogonal Projections of Symplectic Balls
    Dias, Nuno C.
    de Gosson, Maurice A.
    Prata, Joao N.
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [27] Orthogonal and symplectic parabolic bundles
    Biswas, Indranil
    Majumder, Souradeep
    Wong, Michael Lennox
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1462 - 1475
  • [28] Equivalences of the multi-indexed orthogonal polynomials
    Odake, Satoru
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (01)
  • [29] Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads
    Ulrich Dempwolff
    William M. Kantor
    Journal of Algebraic Combinatorics, 2015, 41 : 83 - 108
  • [30] Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads
    Dempwolff, Ulrich
    Kantor, William M.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (01) : 83 - 108