Bound and scattering state solutions of a hyperbolic-type potential

被引:1
|
作者
Ghoumaid, Ali [1 ]
Benamira, Farid [1 ]
Guechi, Larbi [1 ]
机构
[1] Univ Mentouri, Phys Theor Lab, Dept Phys, Fac Sci Exactes, Constantine, Algeria
关键词
POSCHL-TELLER; SCHRODINGER-EQUATION;
D O I
10.1139/cjp-2012-0295
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hyperbolic-type potential with a centrifugal term is solved approximately using the path integral approach. The radial Green's function is expressed in closed form, from which the energy spectrum and the suitably normalized wave functions of bound and scattering states are extracted for (1/2) - root(1/4) - (h(2)alpha(2)/2 mu D)l(l + 1) < sigma < (1/2) + root(1/4) - (h(2)alpha(2)/2 mu D)l(l + 1). Besides, the phase shift and the scattering function Sl for each angular momentum l are deduced. The particular cases corresponding to the s-waves (l = 0) and the barrier potential (sigma = 1) are also analyzed.
引用
收藏
页码:120 / 125
页数:6
相关论文
共 50 条
  • [31] THE HYPERBOLIC-TYPE k-FIBONACCI SEQUENCES AND THEIR APPLICATIONS
    Tas, Sait
    THERMAL SCIENCE, 2022, 26 (SpecialIssue2): : S551 - S558
  • [32] AVERAGING ONE-POINT HYPERBOLIC-TYPE METRICS
    Aksoy, Asuman Guven
    Ibragimov, Zair
    Whiting, Wesley
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (12) : 5205 - 5218
  • [33] Studies on the Bound-State Spectrum of Hyperbolic Potential
    Roy, Amlan K.
    FEW-BODY SYSTEMS, 2014, 55 (02) : 143 - 150
  • [34] PROBLEM OF THE OPTIMAL COEFFICIENT CONTROL FOR THE HYPERBOLIC-TYPE EQUATION
    KULIEV, GF
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1985, (03): : 39 - 44
  • [35] Stabilization of chaotic oscillations in systems with a hyperbolic-type attractor
    A. Yu. Loskutov
    A. V. Popkova
    JETP Letters, 2011, 94 : 86 - 90
  • [36] LINEAR EVOLUTION EQUATIONS OF HYPERBOLIC-TYPE .2.
    KATO, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (04) : 648 - 666
  • [37] Bound and Scattering State of Position Dependent Mass Klein-Gordon Equation with Hulthen Plus Deformed-Type Hyperbolic Potential
    Ikot, A. N.
    Obong, H. P.
    Abbey, T. M.
    Zare, S.
    Ghafourian, M.
    Hassanabadi, H.
    FEW-BODY SYSTEMS, 2016, 57 (09) : 807 - 822
  • [38] Stabilization of chaotic oscillations in systems with a hyperbolic-type attractor
    Loskutov, A. Yu.
    Popkova, A. V.
    JETP LETTERS, 2011, 94 (01) : 86 - 90
  • [39] Composition Operator, Boundedness, Compactness, Hyperbolic Bloch-Type Spaceβμ*, Hyperbolic-Type Space
    Tang, Shuan
    Wu, Pengcheng
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [40] The scattering matrix from bound state solutions
    Kievsky, A.
    13TH CONFERENCE ON THEORETICAL NUCLEAR PHYSICS IN ITALY, 2011, 336