Bound and scattering state solutions of a hyperbolic-type potential

被引:1
|
作者
Ghoumaid, Ali [1 ]
Benamira, Farid [1 ]
Guechi, Larbi [1 ]
机构
[1] Univ Mentouri, Phys Theor Lab, Dept Phys, Fac Sci Exactes, Constantine, Algeria
关键词
POSCHL-TELLER; SCHRODINGER-EQUATION;
D O I
10.1139/cjp-2012-0295
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hyperbolic-type potential with a centrifugal term is solved approximately using the path integral approach. The radial Green's function is expressed in closed form, from which the energy spectrum and the suitably normalized wave functions of bound and scattering states are extracted for (1/2) - root(1/4) - (h(2)alpha(2)/2 mu D)l(l + 1) < sigma < (1/2) + root(1/4) - (h(2)alpha(2)/2 mu D)l(l + 1). Besides, the phase shift and the scattering function Sl for each angular momentum l are deduced. The particular cases corresponding to the s-waves (l = 0) and the barrier potential (sigma = 1) are also analyzed.
引用
收藏
页码:120 / 125
页数:6
相关论文
共 50 条
  • [41] BOUND-STATE REPRESENTATION OF SCATTERING SOLUTIONS
    BASSICHIS, WH
    READING, JF
    SCHEERBAUM, RR
    PHYSICAL REVIEW C, 1975, 11 (02): : 316 - 322
  • [42] A FAMILY OF HYPERBOLIC-TYPE CONTROL SCHEMES FOR ROBOT MANIPULATORS
    Reyes-Cortes, Fernando
    Felix-Beltran, Olga
    Cid-Monjaraz, Jaime
    Alonso-Aruffo, Gweni
    KYBERNETIKA, 2019, 55 (03) : 561 - 585
  • [43] Exact solutions of the sine hyperbolic type potential
    Qian Dong
    Ariadna J. Torres-Arenas
    Guo-Hua Sun
    O. Camacho-Nieto
    Smain Femmam
    Shi-Hai Dong
    Journal of Mathematical Chemistry, 2019, 57 : 1924 - 1931
  • [44] Exact solutions of the sine hyperbolic type potential
    Dong, Qian
    Torres-Arenas, Ariadna J.
    Sun, Guo-Hua
    Camacho-Nieto, O.
    Femmam, Smain
    Dong, Shi-Hai
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (08) : 1924 - 1931
  • [45] New bound and scattering state solutions of the Manning-Rosen potential with the centrifugal term
    Qiang, Wen-Chao
    Li, Kai
    Chen, Wen-Li
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [46] Nonexistence Results for the Hyperbolic-Type Equations on Graded Lie Groups
    Kassymov, Aidyn
    Tokmagambetov, Niyaz
    Torebek, Berikbol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4223 - 4243
  • [47] Zeros of Polynomials Generated by a Rational Function with a Hyperbolic-Type Denominator
    Forgacs, Tamas
    Tran, Khang
    CONSTRUCTIVE APPROXIMATION, 2017, 46 (03) : 617 - 643
  • [48] A LIGHT BEAM WAVEGUIDE USING HYPERBOLIC-TYPE GAS LENSES
    SUEMATSU, Y
    IGA, K
    ITO, S
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1966, MT14 (12) : 657 - +
  • [49] Integral Operators that Determine the Solution of an Iterated Hyperbolic-Type Equation
    I. M. Alexandrovich
    O. S. Bondar
    S. I. Lyashko
    N. I. Lyashko
    M. V.-S. Sydorov
    Cybernetics and Systems Analysis, 2020, 56 : 401 - 409
  • [50] Zeros of Polynomials Generated by a Rational Function with a Hyperbolic-Type Denominator
    Tamás Forgács
    Khang Tran
    Constructive Approximation, 2017, 46 : 617 - 643