Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction

被引:0
|
作者
Zou, Difan [1 ]
Xu, Pan [1 ]
Gu, Quanquan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) algorithms have received increasing attention in both theory and practice. In this paper, we propose a Stochastic Recursive Variance-Reduced gradient HMC (SRVR-HMC) algorithm. It makes use of a semi-stochastic gradient estimator that recursively accumulates the gradient information to reduce the variance of the stochastic gradient. We provide a convergence analysis of SRVR-HMC for sampling from a class of non-log-concave distributions and show that SRVR-HMC converges faster than all existing HMC-type algorithms based on underdamped Langevin dynamics. Thorough experiments on synthetic and real-world datasets validate our theory and demonstrate the superiority of SRVR-HMC.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Monte Carlo Methods and Stochastic Processes
    Tsodikov, Alexander
    INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (01) : 160 - 160
  • [42] Stochastic quasi-gradient methods: variance reduction via Jacobian sketching
    Robert M. Gower
    Peter Richtárik
    Francis Bach
    Mathematical Programming, 2021, 188 : 135 - 192
  • [43] Stochastic quasi-gradient methods: variance reduction via Jacobian sketching
    Gower, Robert M.
    Richtarik, Peter
    Bach, Francis
    MATHEMATICAL PROGRAMMING, 2021, 188 (01) : 135 - 192
  • [44] Variance reduction by antithetic random numbers of Monte Carlo methods for unrestricted and reflecting diffusions
    Costantini, C
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 51 (1-2) : 1 - 17
  • [45] Bias and Computational Efficiency of Variance Reduction Methods for the Monte Carlo Simulation of Imaging Detectors
    Sharma, D.
    Sempau, J.
    Badano, A.
    MEDICAL PHYSICS, 2016, 43 (06) : 3776 - 3776
  • [46] Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization
    D. V. Belomestny
    L. S. Iosipoi
    N. K. Zhivotovskiy
    Doklady Mathematics, 2018, 98 : 494 - 497
  • [47] Variance Reduction in Monte Carlo Estimators via Empirical Variance Minimization
    Belomestny, D. V.
    Iosipoi, L. S.
    Zhivotovskiy, N. K.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 494 - 497
  • [48] Stochastic Gradient Langevin Dynamics with Variance Reduction
    Huang, Zhishen
    Becker, Stephen
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [49] Stochastic gradient descent with variance reduction technique
    Zhang, Jinjing
    Hu, Fei
    Xu, Xiaofei
    Li, Li
    WEB INTELLIGENCE, 2018, 16 (03) : 187 - 194
  • [50] Variance Reduction in Stochastic Gradient Langevin Dynamics
    Dubey, Avinava
    Reddi, Sashank J.
    Poczos, Barnabas
    Smola, Alexander J.
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29