Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction

被引:0
|
作者
Zou, Difan [1 ]
Xu, Pan [1 ]
Gu, Quanquan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) algorithms have received increasing attention in both theory and practice. In this paper, we propose a Stochastic Recursive Variance-Reduced gradient HMC (SRVR-HMC) algorithm. It makes use of a semi-stochastic gradient estimator that recursively accumulates the gradient information to reduce the variance of the stochastic gradient. We provide a convergence analysis of SRVR-HMC for sampling from a class of non-log-concave distributions and show that SRVR-HMC converges faster than all existing HMC-type algorithms based on underdamped Langevin dynamics. Thorough experiments on synthetic and real-world datasets validate our theory and demonstrate the superiority of SRVR-HMC.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Monte Carlo and variance reduction methods for structural reliability analysis: A comprehensive review
    Song, Chenxiao
    Kawai, Reiichiro
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 73
  • [32] Variance reduction order using good lattice points in Monte Carlo methods
    Tuffin, B
    COMPUTING, 1998, 61 (04) : 371 - 378
  • [33] Variance reduction in Monte Carlo capacitance extraction
    Batterywala, SH
    Desai, MP
    18TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: POWER AWARE DESIGN OF VLSI SYSTEMS, 2005, : 85 - 90
  • [34] Variance reduction for multivariate Monte Carlo simulation
    Wang, Jr-Yan
    JOURNAL OF DERIVATIVES, 2008, 16 (01): : 7 - 28
  • [35] Monte Carlo transition dynamics and variance reduction
    Fitzgerald, M
    Picard, RR
    Silver, RN
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) : 321 - 345
  • [36] Monte Carlo Transition Dynamics and Variance Reduction
    M. Fitzgerald
    R. R. Picard
    R. N. Silver
    Journal of Statistical Physics, 2000, 98 : 321 - 345
  • [37] Variance reduction for generalized likelihood ratio method by conditional Monte Carlo and randomized Quasi-Monte Carlo methods
    Peng, Yijie
    Fu, Michael C.
    Hu, Jiaqiao
    L'Ecuyer, Pierre
    Tuffin, Bruno
    JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2022, 7 (04) : 550 - 577
  • [38] Cluster Monte Carlo methods for the FePt Hamiltonian
    Lyberatos, A.
    Parker, G. J.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 400 : 266 - 270
  • [39] Variance reduced Monte Carlo methods for PDEs
    Newton, N.J.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 3):
  • [40] Stochastic Gradient Markov Chain Monte Carlo
    Nemeth, Christopher
    Fearnhead, Paul
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 433 - 450