Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction

被引:0
|
作者
Zou, Difan [1 ]
Xu, Pan [1 ]
Gu, Quanquan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) algorithms have received increasing attention in both theory and practice. In this paper, we propose a Stochastic Recursive Variance-Reduced gradient HMC (SRVR-HMC) algorithm. It makes use of a semi-stochastic gradient estimator that recursively accumulates the gradient information to reduce the variance of the stochastic gradient. We provide a convergence analysis of SRVR-HMC for sampling from a class of non-log-concave distributions and show that SRVR-HMC converges faster than all existing HMC-type algorithms based on underdamped Langevin dynamics. Thorough experiments on synthetic and real-world datasets validate our theory and demonstrate the superiority of SRVR-HMC.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hamiltonian Monte Carlo method for estimating variance components
    Arakawa, Aisaku
    Hayashi, Takeshi
    Taniguchi, Masaaki
    Mikawa, Satoshi
    Nishio, Motohide
    ANIMAL SCIENCE JOURNAL, 2021, 92 (01)
  • [22] Monte Carlo Hamiltonian from stochastic basis
    Huang, CQ
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 2002, 299 (5-6) : 483 - 493
  • [23] On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients
    Zou, Difan
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [24] Stochastic Gradient Population Monte Carlo
    El-Laham, Yousef
    Bugallo, Monica F.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 46 - 50
  • [25] Fast Stochastic Bregman Gradient Methods: Sharp Analysis and Variance Reduction
    Dragomir, Radu-Alexandru
    Even, Mathieu
    Hendrikx, Hadrien
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [26] Variance reduction for Monte Carlo methods to evaluate option prices under multi-factor stochastic volatility models
    Fouque, JP
    Han, CH
    QUANTITATIVE FINANCE, 2004, 4 (05) : 597 - 606
  • [27] Variance reduction order using good lattice points in monte carlo methods
    B. Tuffin
    Computing, 1998, 61 : 371 - 378
  • [28] Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
    Akyildiz, O. Deniz
    Sabanis, Sotirios
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [29] Variance reduction order using good lattice points in Monte Carlo methods
    Tuffin, B.
    Computing (Vienna/New York), 1998, 61 (04): : 371 - 378
  • [30] Adaptive Monte Carlo Variance Reduction with Two-time-scale Stochastic Approximation
    Kawai, Reiichiro
    MONTE CARLO METHODS AND APPLICATIONS, 2007, 13 (03): : 197 - 217