Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction

被引:0
|
作者
Zou, Difan [1 ]
Xu, Pan [1 ]
Gu, Quanquan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
MCMC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) algorithms have received increasing attention in both theory and practice. In this paper, we propose a Stochastic Recursive Variance-Reduced gradient HMC (SRVR-HMC) algorithm. It makes use of a semi-stochastic gradient estimator that recursively accumulates the gradient information to reduce the variance of the stochastic gradient. We provide a convergence analysis of SRVR-HMC for sampling from a class of non-log-concave distributions and show that SRVR-HMC converges faster than all existing HMC-type algorithms based on underdamped Langevin dynamics. Thorough experiments on synthetic and real-world datasets validate our theory and demonstrate the superiority of SRVR-HMC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Zhize Li
    Tianyi Zhang
    Shuyu Cheng
    Jun Zhu
    Jian Li
    Machine Learning, 2019, 108 : 1701 - 1727
  • [2] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Li, Zhize
    Zhang, Tianyi
    Cheng, Shuyu
    Zhu, Jun
    Li, Jian
    MACHINE LEARNING, 2019, 108 (8-9) : 1701 - 1727
  • [3] On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
    Chatterji, Niladri S.
    Flammarion, Nicolas
    Ma, Yi-An
    Bartlett, Peter L.
    Jordan, Michael I.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [4] Stochastic Gradient Hamiltonian Monte Carlo
    Chen, Tianqi
    Fox, Emily B.
    Guestrin, Carlos
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1683 - 1691
  • [5] A Hybrid Stochastic Gradient Hamiltonian Monte Carlo Method
    Zhang, Chao
    Li, Zhijian
    Shen, Zebang
    Xie, Jiahao
    Qian, Hui
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10842 - 10850
  • [6] Methods for variance reduction in Monte Carlo simulations
    Bixler, Joel N.
    Hokr, Brett H.
    Winblad, Aidan
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXVII, 2016, 9706
  • [7] Decentralized Stochastic Gradient Langevin Dynamics and Hamiltonian Monte Carlo
    Gurbuzbalaban, Mert
    Gao, Xuefeng
    Hu, Yuanhan
    Zhu, Lingjiong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [8] Decentralized stochastic gradient langevin dynamics and hamiltonian Monte Carlo
    Gürbüzbalaban, Mert
    Gao, Xuefeng
    Hu, Yuanhan
    Zhu, Lingjiong
    Journal of Machine Learning Research, 2021, 22
  • [9] Variance Reduction Monte Carlo methods for wind turbines
    Sichani, M. T.
    Nielsen, S. R. K.
    Thoft-Christensen, P.
    APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 141 - 149
  • [10] Variance reduction for Monte Carlo simulation of stochastic environmental models
    Schoenmakers, JGM
    Heemink, AW
    Ponnambalam, K
    Kloeden, PE
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (08) : 785 - 795