On the bondage number of middle graphs

被引:0
|
作者
Aytac, A. [1 ]
Turaci, T. [1 ]
Odabas, Z. N. [2 ]
机构
[1] Ege Univ, Izmir, Turkey
[2] Izmir Univ Econ, Izmir, Turkey
关键词
connectivity; network design and communication; strong and weak domination number; bondage number; strong and weak bondage number; middle graphs; DOMINATION;
D O I
10.1134/S0001434613050180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V (G),E(G)) be a simple graph. A subset S of V (G) is a dominating set of G if, for any vertex v a V (G) - S, there exists some vertex u a S such that uv a E(G). The domination number, denoted by gamma(G), is the cardinality of a minimal dominating set of G. There are several types of domination parameters depending upon the nature of domination and the nature of dominating set. These parameters are bondage, reinforcement, strong-weak domination, strong-weak bondage numbers. In this paper, we first investigate the strong-weak domination number of middle graphs of a graph. Then several results for the bondage, strong-weak bondage number of middle graphs are obtained.
引用
收藏
页码:795 / 801
页数:7
相关论文
共 50 条
  • [31] The bondage number of (n-3)-regular graphs of order n
    Hu, Fu-Tao
    Xu, Jun-Ming
    ARS COMBINATORIA, 2015, 120 : 275 - 281
  • [32] DOMINATION NUMBER OF MIDDLE GRAPHS
    Kazemnejad, Farshad
    Pahlavsay, Behnaz
    Palezzato, Elisa
    Torielli, Michele
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (02) : 79 - 91
  • [33] On the average lower bondage number of graphs under join and corona operations
    Turaci, Tufan
    Kocay, Gamze
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 654 - 665
  • [34] Independent bondage number of planar graphs with minimum degree at least 3
    Pham, Andrew
    Wei, Bing
    DISCRETE MATHEMATICS, 2022, 345 (12)
  • [35] Restrained bondage in graphs
    Hattingh, Johannes H.
    Plummer, Andrew R.
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5446 - 5453
  • [36] Double bondage in graphs
    Krzywkowski, Marcin
    UTILITAS MATHEMATICA, 2016, 101 : 227 - 242
  • [37] HUB NUMBER OF GENERALIZED MIDDLE GRAPHS
    Basavanagoud, B.
    Sayyed, Mahammadsadiq
    Barangi, Anand P.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 284 - 295
  • [38] On the number of perfect matchings of middle graphs
    Lai, Jingchao
    Yan, Weigen
    Feng, Xing
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 86 - 91
  • [39] Total domination number of middle graphs
    Kazemnejad, Farshad
    Pahlavsay, Behnaz
    Palezzato, Elisa
    Torielli, Michele
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 275 - 288
  • [40] THE BONDAGE NUMBER OF A GRAPH
    FINK, JF
    JACOBSON, MS
    KINCH, LF
    ROBERTS, J
    DISCRETE MATHEMATICS, 1990, 86 (1-3) : 47 - 57