On the bondage number of middle graphs

被引:0
|
作者
Aytac, A. [1 ]
Turaci, T. [1 ]
Odabas, Z. N. [2 ]
机构
[1] Ege Univ, Izmir, Turkey
[2] Izmir Univ Econ, Izmir, Turkey
关键词
connectivity; network design and communication; strong and weak domination number; bondage number; strong and weak bondage number; middle graphs; DOMINATION;
D O I
10.1134/S0001434613050180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V (G),E(G)) be a simple graph. A subset S of V (G) is a dominating set of G if, for any vertex v a V (G) - S, there exists some vertex u a S such that uv a E(G). The domination number, denoted by gamma(G), is the cardinality of a minimal dominating set of G. There are several types of domination parameters depending upon the nature of domination and the nature of dominating set. These parameters are bondage, reinforcement, strong-weak domination, strong-weak bondage numbers. In this paper, we first investigate the strong-weak domination number of middle graphs of a graph. Then several results for the bondage, strong-weak bondage number of middle graphs are obtained.
引用
收藏
页码:795 / 801
页数:7
相关论文
共 50 条
  • [1] On the bondage number of middle graphs
    A. Aytaç
    T. Turaci
    Z. N. Odabaş
    Mathematical Notes, 2013, 93 : 795 - 801
  • [2] The Disjunctive Bondage Number and the Disjunctive Total Bondage Number of Graphs
    Yi, Eunjeong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 660 - 675
  • [3] Bondage number of grid graphs
    Dettlaff, Magda
    Lemanska, Magdalena
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 94 - 99
  • [4] On the bondage number of block graphs
    Teschner, U
    ARS COMBINATORIA, 1997, 46 : 25 - 32
  • [5] THE BONDAGE NUMBER OF SOME GRAPHS
    Aytac, Aysun
    Odabas, Zeynep Nihan
    Turaci, Tufan
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (07): : 925 - 930
  • [6] The bondage number of random graphs
    Mitsche, Dieter
    Perez-Gimenez, Xavier
    Pralat, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [7] Bondage number of planar graphs
    Kang, LY
    Yuan, JJ
    DISCRETE MATHEMATICS, 2000, 222 (1-3) : 191 - 198
  • [8] Bondage number in oriented graphs
    Shan, Erfang
    Kang, Liying
    ARS COMBINATORIA, 2007, 84 : 319 - 331
  • [9] The total bondage number of grid graphs
    Hu, Fu-Tao
    Lu, You
    Xu, Jun-Ming
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (16-17) : 2408 - 2418
  • [10] On the Roman Bondage Number of Planar Graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 531 - 538