On the bondage number of middle graphs

被引:0
|
作者
Aytac, A. [1 ]
Turaci, T. [1 ]
Odabas, Z. N. [2 ]
机构
[1] Ege Univ, Izmir, Turkey
[2] Izmir Univ Econ, Izmir, Turkey
关键词
connectivity; network design and communication; strong and weak domination number; bondage number; strong and weak bondage number; middle graphs; DOMINATION;
D O I
10.1134/S0001434613050180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V (G),E(G)) be a simple graph. A subset S of V (G) is a dominating set of G if, for any vertex v a V (G) - S, there exists some vertex u a S such that uv a E(G). The domination number, denoted by gamma(G), is the cardinality of a minimal dominating set of G. There are several types of domination parameters depending upon the nature of domination and the nature of dominating set. These parameters are bondage, reinforcement, strong-weak domination, strong-weak bondage numbers. In this paper, we first investigate the strong-weak domination number of middle graphs of a graph. Then several results for the bondage, strong-weak bondage number of middle graphs are obtained.
引用
收藏
页码:795 / 801
页数:7
相关论文
共 50 条
  • [11] On the Roman Bondage Number of Planar Graphs
    Nader Jafari Rad
    Lutz Volkmann
    Graphs and Combinatorics, 2011, 27 : 531 - 538
  • [12] On the bondage number of planar and directed graphs
    Carlson, Kelli
    Develin, Mike
    DISCRETE MATHEMATICS, 2006, 306 (8-9) : 820 - 826
  • [13] Remarks on the bondage number of planar graphs
    Fischermann, M
    Rautenbach, D
    Volkmann, L
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 57 - 67
  • [14] A Note on Roman Bondage Number of Graphs
    Akbari, Saieed
    Qajar, Sahar
    ARS COMBINATORIA, 2016, 126 : 87 - 92
  • [15] A BOUND ON THE BONDAGE NUMBER OF TOROIDAL GRAPHS*
    Hou, Jianfeng
    Liu, Guizhen
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [16] Restrained Italian bondage number in graphs
    Ebrahimi, N.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
  • [17] ON THE DOUBLE BONDAGE NUMBER OF GRAPHS PRODUCTS
    Koushki, Zeinab
    Maimani, Hamidreza
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (01) : 51 - 59
  • [18] A Note on the Roman Bondage Number of Planar Graphs
    Akbari, Saieed
    Khatirinejad, Mahdad
    Qajar, Sahar
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 327 - 331
  • [19] A Note on the Roman Bondage Number of Planar Graphs
    Saieed Akbari
    Mahdad Khatirinejad
    Sahar Qajar
    Graphs and Combinatorics, 2013, 29 : 327 - 331
  • [20] The Bondage Number of Graphs with Crossing Number Less than Four
    Cao, Yong-Chang
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2013, 112 : 493 - 502