A B-spline approach for empirical mode decompositions

被引:208
|
作者
Chen, QH
Huang, N
Riemenschneider, S
Xu, YS
机构
[1] Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R China
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[4] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[5] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 美国国家航空航天局;
关键词
B-splines; nonlinear and nonstationary signals; empirical mode decompositions; Hilbert transforms;
D O I
10.1007/s10444-004-7614-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an alternative B-spline approach for empirical mode decompositions for nonlinear and nonstationary signals. Motivated by this new approach, we derive recursive formulas of the Hilbert transform of B-splines and discuss Euler splines as spline intrinsic mode functions in the decomposition. We also develop the Bedrosian identity for signals having vanishing moments. We present numerical implementations of the B-spline algorithm for an earthquake signal and compare the numerical performance of this approach with that given by the standard empirical mode decomposition. Finally, we discuss several open mathematical problems related to the empirical mode decomposition.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 50 条
  • [41] An optimal B-spline approach for vectorizing raster image outlines
    Abbas, Samreen
    Hussain, Malik Zawwar
    ul-Ain, Qurat
    PLOS ONE, 2024, 19 (08):
  • [42] CALCULATING OF B-SPLINE CURVES
    BOHM, W
    COMPUTING, 1977, 18 (02) : 161 - 166
  • [43] ON A BIVARIATE B-SPLINE BASIS
    崔锦泰
    王仁宏
    Science China Mathematics, 1984, (11) : 1129 - 1142
  • [44] Hierarchical B-spline refinement
    Forsey, David R.
    Bartels, Richard H.
    Computer Graphics (ACM), 1988, 22 (04): : 205 - 212
  • [45] MULTIRESOLUTION B-SPLINE RADIOSITY
    YU, YZ
    PENG, QS
    COMPUTER GRAPHICS FORUM, 1995, 14 (03) : C285 - &
  • [46] Regularization of B-spline objects
    Xu, Guoliang
    Bajaj, Chandrajit
    COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (01) : 38 - 49
  • [47] On the positivity of B-spline Wronskians
    Floater, Michael S.
    CALCOLO, 2024, 61 (03)
  • [48] NUAT B-spline curves
    Wang, GZ
    Chen, QY
    Zhou, MH
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (02) : 193 - 205
  • [49] Monotone B-spline smoothing
    He, XM
    Shi, P
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) : 643 - 650
  • [50] Successive Projection with B-spline
    Ueda, Yuki
    Saito, Norikazu
    INFORMATION TECHNOLOGY: NEW GENERATIONS, 2016, 448 : 917 - 928