A B-spline approach for empirical mode decompositions

被引:208
|
作者
Chen, QH
Huang, N
Riemenschneider, S
Xu, YS
机构
[1] Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R China
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[4] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[5] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 美国国家航空航天局;
关键词
B-splines; nonlinear and nonstationary signals; empirical mode decompositions; Hilbert transforms;
D O I
10.1007/s10444-004-7614-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an alternative B-spline approach for empirical mode decompositions for nonlinear and nonstationary signals. Motivated by this new approach, we derive recursive formulas of the Hilbert transform of B-splines and discuss Euler splines as spline intrinsic mode functions in the decomposition. We also develop the Bedrosian identity for signals having vanishing moments. We present numerical implementations of the B-spline algorithm for an earthquake signal and compare the numerical performance of this approach with that given by the standard empirical mode decomposition. Finally, we discuss several open mathematical problems related to the empirical mode decomposition.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 50 条
  • [31] Transformer Winding Vibration Enveloping for Empirical Mode Decomposition based on Non-uniform B-spline Fitting
    Xiong, Weihua
    Pan, Haipeng
    2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 1, 2009, : 220 - 223
  • [32] An Integrative Approach for Analysis of Nonlinear Electrical Circuits Using-Polynomial B-Spline Expansion and B-Spline Krawczyk Operator
    Gawali D.D.
    Zidna A.
    Nataraj P.S.V.
    International Journal of Applied and Computational Mathematics, 2022, 8 (1)
  • [33] Uniform spline approach using symmetric B-spline basis on closed periodic zone
    Zhou, Kaiting
    Zheng, Lixin
    Lin, Fuyong
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2009, 21 (10): : 1406 - 1411
  • [34] Bayesian penalized B-spline estimation approach for epidemic models
    Meng, Lixin
    Tao, Jian
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (01) : 88 - 99
  • [35] Kernel density regression in the additive model: a B-spline approach
    Li, Facheng
    Liu, Huilan
    STATISTICAL PAPERS, 2025, 66 (01)
  • [36] A MATRIX APPROACH TO THE ANALYSIS OF RECURSIVELY GENERATED B-SPLINE SURFACES
    BALL, AA
    STORRY, DJT
    COMPUTER-AIDED DESIGN, 1986, 18 (08) : 437 - 442
  • [37] Fast Degree Elevation Approach for Cubic B-spline Curve
    Che, Xiangjiu
    Xu, Zhiwen
    Liu, Yang
    Wang, Zhengxuan
    9TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1 AND 2: MULTICULTURAL CREATION AND DESIGN - CAID& CD 2008, 2008, : 693 - 697
  • [38] Approximation by B-spline convolution operators.: A probabilistic approach
    Adell, JA
    Sangüesa, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 174 (01) : 79 - 99
  • [39] Calculation of the lifetimes for Rydberg states of Li by B-spline approach
    Lai, Zhangli
    Gou, Qingdong
    Li, Yong
    INDIAN JOURNAL OF PHYSICS, 2024, : 783 - 792
  • [40] Patchwork B-spline refinement
    Engleitner, Nora
    Juettler, Bert
    COMPUTER-AIDED DESIGN, 2017, 90 : 168 - 179