On the positivity of B-spline Wronskians

被引:0
|
作者
Floater, Michael S. [1 ]
机构
[1] Univ Oslo, Dept Math, Moltke Moes Vei 35, N-0851 Oslo, Norway
关键词
B-splines; Wronskians; Collocation; Schoenberg-Whitney conditions; Total positivity; COMPUTATION;
D O I
10.1007/s10092-024-00613-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proof that Wronskians of non-zero B-splines are positive is given, using only recursive formulas for B-splines and their derivatives. This could be used to generalize the de Boor-DeVore geometric proof of the Schoenberg-Whitney conditions and total positivity of B-splines to Hermite interpolation. For Wronskians of maximal order with respect to a given degree, positivity follows from a simple formula.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Almost strictly total positivity of AH B-spline bases
    Wei, W. (mileir@163.com), 1600, Institute of Computing Technology (26):
  • [2] Almost strictly total positivity of NUAT B-spline basis
    Wei WeiLi
    Wang GuoZhao
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (09) : 1 - 6
  • [3] Almost strictly total positivity of NUAT B-spline basis
    WeiLi Wei
    GuoZhao Wang
    Science China Information Sciences, 2013, 56 : 1 - 6
  • [4] Almost strictly total positivity of NUAT B-spline basis
    WEI WeiLi
    WANG GuoZhao
    Science China(Information Sciences), 2013, 56 (09) : 50 - 55
  • [5] Extending Ball B-spline by B-spline
    Liu, Xinyue
    Wang, Xingce
    Wu, Zhongke
    Zhang, Dan
    Liu, Xiangyuan
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 82
  • [6] Extended cubic uniform B-spline and α-B-spline
    Institute of Computer Graphics and Image Processing, Department of Mathematics, Zhejiang University, Hangzhou 310027, China
    Zidonghua Xuebao, 2008, 8 (980-983):
  • [7] A quadratic trigonometric B-Spline as an alternate to cubic B-spline
    Samreen, Shamaila
    Sarfraz, Muhammad
    Mohamed, Abullah
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 11433 - 11443
  • [8] alpha B-spline: A linear singular blending B-spline
    Loe, KF
    VISUAL COMPUTER, 1996, 12 (01): : 18 - 25
  • [9] ALTERNATE SPLINE - A GENERALIZED B-SPLINE
    BIEN, AP
    CHENG, FH
    JOURNAL OF APPROXIMATION THEORY, 1987, 51 (02) : 138 - 159
  • [10] As-developable-as-possible B-spline surface interpolation to B-spline curves
    Bo, Pengbo
    Zheng, Yujian
    Chu, Dianhui
    Zhang, Caiming
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 79